2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

SC-MCC: A Stronger Code Coverage Criterion

Sangharatna Godboley'*, Monika Rani Golla?, and P Radha Krishna®
1.2,3 NITMiner Technologies, Department of Computer Science and Engineering,
National Institute of Technology Warangal, Warangal, India
Isanghu@nitw.ac.in, 2gm720080@student.nitw.ac.in, *prkrishna@nitw.ac.in
*corresponding author

Abstract—White-box testing typically involves structural code
coverage criteria that measure the extent to which a program’s
source code has been tested. To efficiently generate test cases
while achieving high code coverage, it is important to consider
the Short-Circuit evaluation, a feature present in high-level
programming languages. In this paper, we propose a new
coverage technique called Short-Circuit Multiple Condition
Coverage (SC-MCC) and compare it with the state-of-the-art
Modified Condition/Decision Coverage (MC/DC). We analyze
the test suite size and the time required for the final test suite
generation by varying the number of clauses in the conditions.
Our experimental results demonstrate that SC-MCC provides

| float calculate_area(float sl,

sufficient confidence and proves to be more efficient than

MC/DC for higher-level languages.
Keywords—White-box testing; Short-Circuit Multiple Condi-

tion; Modified Condition/Decision Coverage; Short-Circuit

Evaluation;

1. INTRODUCTION

White-box testing typically includes structural code coverage
criteria such as Statement Coverage, Decision Coverage, Con-
dition Coverage, Condition/Decision Coverage, Modified Con-
dition/Decision Coverage (MC/DC) [1, 2, 3, 4], and Multiple
Condition Coverage (MCC) [5, 6, 7, 8]. In this work, we
focus on MCC and MC/DC approaches. MCC generates test
cases of the order of 2V, where N is the total number of
Atomic Conditions in a Boolean expression, while MC/DC
generates a linear number of test cases ranging from N + 1
to 2N. Practitioners recommend the use of MC/DC to test
safety-critical applications [9, 10]. Moreover, standards such
as DO178B(C) [11] mandate the computation of MC/DC for
the Level A category software.

When testing a program using Short-Circuit (SC) evaluation,
the compiler skips the evaluation of certain sub-expressions
within a logical expression. That is, the compiler stops eval-
uating further sub-expressions as soon as the value of the ex-
pression is determined. Since most safety-critical applications
are developed using high-level languages, the SC evaluation
property can be adopted during testing. The range of test cases
for MC/DC with SC (SC-MC/DC) remains the same, that is,
from N + 1 to 2N test cases, whereas MCC with SC (SC-
MCC) drastically drops the number of test cases. However,
this cannot be generalized because don’t-care situations are
completely dynamic, and the number of generated test cases
depends on them. Still, the number of test cases required for

2693-9371/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS-C60940.2023.00083

62

SC-MCC is significantly less than 2%, In this work, we argue
that SC-MCC incurs less overhead compared to SC-MC/DC,
and achieves confident code coverage. Here, confident code
coverage can be termed as a complete criterion that subsumes
all other criteria, including SC-MC/DC. We study the prob-
lems with SC-MC/DC and show how SC-MCC can effectively
overcome these issues.

To define some of the terms used in MC/DC coverage,
we consider an example of a function (see Listing 1) that
calculates the area of a triangle based on the lengths of its
sides.

float s2, float s3):
float p, area;
if(!(sl <=0 or s2 <=0 or s3 <= 0)){

p = (sl + s2 + s3) / 2;

area = (p # (p — s1) % (p — s2) * (p - s3))
#x 0.5,

return area;
}else{

return 0;
}

Listing 1. A code snippet of a sample original program.

Independent Pair: Two conditions are considered indepen-
dent if the value of one does not affect the outcome of the
other. For example, in the calculate_area function, the
conditions s1 < 0 and s2 < 0 are independent, but s1 < 0
and p < 0 are not independent, since the value of p depends
on sl.

Minimal Set: A set of conditions is considered minimal if
removing any condition from the makes it no longer possi-
ble to satisfy the MC/DC coverage criterion. For example,
in the calculate_area function, the set of conditions
{51 <0,52<0,s3 <0} is a minimal set.

Test Sequence: A test sequence is a set of inputs that executes
a specific path through the program. For example, a test
sequence for the calculate_area function that satisfies
the s1 < 0 condition could be {s1 = —1,52 = 2,53 = 2}.
Test Set: A test set is a collection of test sequences that
satisfies the MC/DC coverage criterion for a program. For
example, a test set for the calculate_area function might
include test sequences like {sl1 3,52 = 4,s3 5},
{s1=0,s2=1,83 =1}, and {s1 = —1,s2 =2,83 = 2}.
Test Set Size: The size of a test set is the number of test
sequences it contains. A smaller test set size is generally
preferable, as it reduces the time and effort required for testing.
Feasible Solution: A solution to a problem is considered
feasible if it meets all the constraints of the problem. For exam-

ple, a feasible solution for the calculate_area function
might be {s1 = 3,52 = 4,s3 = 5}, since it satisfies all the
conditions of the program.

Infeasible Solution: A solution to a problem is considered
infeasible if it violates one or more of the constraints of the
problem. For example, {sl = 0,s2 = 0,s3 0} is an
infeasible solution for the calculate_area function, since
it violates the condition that all sides must be positive.

In the case of MC/DC, the generation of test cases is very
expensive [12, 13]. Moreover, the set of independent pairs
may have multiple choices (minimal sets). It is challenging
to choose the best choice/solution for the independent pairs.
Here, there are two possible consequences: (i) the selected
minimal set is a bad choice, resulting in a low MC/DC score,
and (ii) checking all possible minimal sets and considering
the best one, which is a time-consuming step. Suppose, for
a predicate (6 atomic conditions), we have 5 minimal sets,
and each set takes 1 minute to execute. To check all the sets,
it takes 5 minutes. On the other hand, for a predicate with
15 to 20 atomic conditions, the number of minimal sets is
reasonably large, say 200 sets (instead of 10 sets). To select
the best 10 choices/sets, it may need an extra 190 minutes.
So, we need to estimate a good number of predicates for a
complete program by addressing both consequences.

To prove satisfiable/unsatisfiable [14] for the independent pair
test scenarios, it is required to check for each minimal set’s
test sequence whether it is feasible or infeasible. Because the
feasible sequences contribute to the overall MC/DC score, the
generation of MC/DC test cases might suffer from the two
mentioned consequences. There are several commercial tools
(e.g., [15, 16]) that report MC/DC, which results in different
versions of MC/DC. However, their algorithms are Black-
Box, and thus it is unknown how these tools deal with the
above problems. Hence, to achieve better results in software
testing, it is recommended to use test cases based on the SC-
MCC coverage criterion rather than any version of the MC/DC
criterion.

In this work, we propose an economical solution to address
the above issues. In general, the test cases generated for SC-
MCC are comparatively very few compared to those generated
for MCC. Also, unlike MC/DC where there are multiple sets,
SC-MCC has only one solution. It is a fact that the SC-MCC
solution size is larger than the solution size of any version
of MC/DC. However, the difference between the number of
test scenarios does not vary much. Secondly, SC-MCC has
only one solution, and the test scenarios are executed only
once, hence less time consumption. These advantages of SC-
MCC make it preferable to generate optimal test cases rather
than MC/DC. Further, there is a good chance of achieving
high mutation scores [17] for the two faulty types, namely
Logical Operator Replacement (LOR) and Relational Operator
Replacement (ROR) with SC-MCC when compared to SC-
MC/DC. Because different algorithms use different styles, one
should choose an algorithm that results in a low MC/DC score
to obtain the best choice of a minimal set. On the other hand,
any algorithm that computes SC-MCC reports a unique score

63

only.

2. RELATED WORK

Multiple Condition Coverage (MCC) is a challenging metric to
meet due to its requirement that every possible combination of
conditions must be tested. However, various approaches have
been proposed to address this challenge, including risk analysis
[13], model-based testing techniques [18], automated testing
techniques [19], and combining model checking with sym-
bolic execution [20]. These approaches can increase efficiency
and effectiveness in testing while fulfilling coverage criteria,
leading to more reliable and secure safety-critical systems.
Heimdabhl et al. [13] discuss various approaches for calculating
and measuring code coverage, which refers to the extent to
which a software codebase has been tested, and highlight the
importance of achieving high coverage to ensure the reliability
and functionality of software systems.

Several automated testing techniques, such as Unified Com-
binatorial Interaction Testing (U-CIT) [21] and coverage-
guided fuzzing [20], are proposed to generate test cases
more efficiently and effectively. Model-Based Testing (MBT)
[22, 23] is an approach to automatically generate executable
test cases according to system specification models. Safety
SysML State Machine (S2MSM) [24] is a modeling language
specifically designed to address safety requirements in Safety-
Critical Systems (SCSs) during the requirement modeling
stage. Bounded model checking [25] is a technique used to
verify the correctness of the SCSs by exploring all possible
states within a certain bound. SCSs such as avionics prefer
MC/DC criterion satisfaction due to their effectiveness in
detecting errors.

Sanjai et al. [26] proposed a new approach that combines
model checking with symbolic execution to generate test
sequences that satisfy MC/DC-like coverage criteria for state-
based formalisms. This involves encoding the software behav-
ioral model and the coverage criterion as a temporal logic
formula, which is then checked against the model using a
model checker. If the formula is not satisfied, the model
checker generates a counterexample, which is used to guide
symbolic execution to generate a new test sequence that
satisfies the coverage criterion.

Chilenski [27] explored three variations of the Modified Con-
dition Decision Coverage (MCDC) criterion, a popular testing
technique used in software engineering. The results of the
study show that the stronger version of the criterion is the
most effective in detecting faults, followed by the standard
MCDC criterion and then the MCC criterion. However, it
requires significantly more test cases to achieve the same
level of coverage as the other two criteria, making it more
time-consuming and expensive to implement. Literature shows
that, the use of short-circuit evaluation can make MC/DC
testing more practical for safety-critical software implemented
in languages that support it, such as C and C++. This can help
reduce the time and cost associated with testing such software
while still ensuring a high level of safety.

Dupuy et al. [6] concluded that although the cost of testing
to meet MC/DC criteria was relatively high, it was not
substantially more expensive than obtaining lower levels of
code coverage. They discovered that essential errors were
identified through the additional test cases necessary to achieve
MC/DC coverage, meaning in the software that was not
covered by black-box functional testing. Hence, their study
highlights the importance of augmenting testing to achieve
MC/DC coverage. Sergiy et al. [28] proposed the RC/DC
criterion that addresses the limitation of the MC/DC criterion,
which does not encompass the testing of “false operation”
type failures that can be critical in safety-critical computer
systems. The RC/DC criterion aims to overcome this limitation
by mandating the assessment of scenarios in which modifying
a condition retains the value of a decision.

Similarly, Kandl et al. [29] proposed a new criterion, MC/DC
with Short-Circuit evaluation. The study indicates that the
overhead associated with generating a test suite for MCC
only increases by an average of approximately 35% when
compared to MC/DC. Furthermore, the maximum overhead
observed was approximately 100%. Here, in this paper, we
formalize the notation of SC-MCC in the form of a Meta
Program. Also, we evaluated the efficiency of the SC-MCC
coverage criterion against MC/DC by analyzing the number of
test cases generated when the number of conditions varies. Our
findings indicated that the adoption of SC-MCC resulted in a
reasonable increase in computation time compared to MC/DC.
Therefore, our study supports the viability of using SC-MCC
as an alternative coverage criterion.

The main contributions of this paper are as follows:

We measured the efficiency of the proposed SC-MCC
coverage criterion over MC/DC in terms of condition count
versus the number of test cases generated. Thus, we proved
that there is an acceptable overhead when SC-MCC has
opted instead of MC/DC.

We compared the time taken to prove n number of con-
ditions for each coverage criterion say MC/DC, SC-MCC,
and MCC. Thus, demonstrating the efficiency of SC-MCC
over MCC.

3. PROPOSED APPROACH

The proposed framework comprises two modes: (a) Mode 1
corresponds to MCDC, and (b) Mode 2 corresponds to SC-
MCC. The original C program serves as input for both of
these modes. There are two versions of the program: one
follows the C Bounded Model Checker (CBMC) [25], and the
other follows GCOV [30]. In the CBMC version, the scanf
function is replaced with the _ CPROVER_input function.

In [31], authors developed a Meta Program Generator (MPG)
that instruments the test sequences (MC/DC or SC-MCC) of
each predicate into the program. Fig. 1 depicts the framework
of Mode 1, MC/DC. First, MC/DC sequences are obtained
from the CBMC version program using the “—cover mcdc —

show-properties” option of the CBMC tool. These sequences > —
3 if ((symb != 10) && (symb != 6) && (symb != 1) && (

are instrumented into the given CBMC version program, called
MC/DC Meta Program, using MPG. Next, with the help of the

64

MC/DC SequencesII

CBMC MC/DC
(--showProperties)

i
original Program

Figure 1. Framework of the Model-MC/DC.

MC/DC Test CBSESII

MC/DC
Meta Program

[

CBMC
(—-cover)

Meta Program
Generator

SC-MCC Sequences|

SC-MCC Test Cases

SC-MCC
Meta Program

Sequence
Generator

r

-

>
Original Program

Figure 2. Framework of the Mode2-SC-MCC.

CBMC
(--cover)

Meta Program
Generator

“—cover cover” option of CBMC, the MC/DC criterion-based
test suites are generated from the MC/DC Meta program. The
framework of Mode 2, SC-MCC, is shown in Fig. 2. The SC-
MCC sequences are generated by our Sequence Generator.
These sequences are instrumented into the given CBMC
version program, called SC-MCC Meta Program, using Meta
Program Generator. Next, with the help of the “—cover cover”
option of CBMC, the SC-MCC criteria-based test suites are
generated from the SC-MCC Meta program.

Example of MPG: We explain the working of the MPG
with an example. Consider the code snippet of the sample
original program shown in Listing 2 [31]. After identifying
the predicates, we generated SC-MCC sequences, and the
MPG outputs a Meta program that contains each predicate’s
SC-MCC sequences just above the predicate line, in the
following format: __ CPROVER_cover(...);. The corresponding
meta program to Listing 2 is shown in Listing 3 [32]. Here, the
lines from 2 to 9 are the SC-MCC sequences of the predicate
located at line 10. Thus, this meta program, when executed
with the help of CBMC’s —cover option, produces the SC-
MCC tests.

int symb nondet_int () ;
__CPROVER_input(”symb” ,symb) ;

symb != 8) && (symb != 2) && (symb != 5)){printf
(”Problem with return -2 \n”);}

calculate_output (symb) ;

Listing 2. A code snippet of a sample original program.

int symb nondet_int () ;

> __CPROVER_input(”symb” ,symb) ;
: __CPROVER_cover ((!(!(symb!=10)&&symb!=6&&symb!=1&&

symb!=8&&symb!=2&&symb !=5))) ;
__CPROVER_cover ((!(symb!=10&&!(symb !=6)&&symb!=1&&
symb!=8&&symb!=2&&symb !=5))) ;

5 __CPROVER_cover ((!(symb!=10&&symb!=6&&!(symb !=1)&&

symb!=8&&symb!=2&&symb !=5))) ;

__CPROVER_cover ((!(symb!=10&&symb!=6&&symb !=1&&!(
symb ! =8)&&symb!=2&&symb !=5))) ;

__CPROVER_cover ((!(symb!=10&&symb!=6&&symb!=1&&symb
1=8&&!(symb !=2)&&symb !=5))) ;

__CPROVER_cover ((!(symb!=10&&symb!=6&&symb!=1&&symb
1=8&&symb !=2&&!(symb!=5))));

__CPROVER_cover ((!(symb!=10&&symb!=6&&symb!=1&&symb
1=8&&symb!=2&&symb!=5))) ;

if ((symb != 10) && (symb != 6) && (symb != 1) && (
symb != 8) && (symb != 2) && (symb != 5))

printf (”Problem with return -2 \n”);

calculate_output(symb);

Listing 3. A code snippet of SC-MCC Meta program(generated by MPG).

TABLE I
TOTAL NUMBER OF TRUTH COMBINATIONS OR TEST SEQUENCES FOR
DIFFERENT CRITERIA (NOTE: N IS THE TOTAL NUMBER OF ATOMIC
CONDITIONS IN A BOOLEAN EXPRESSION; #C IS THE CONDITION COUNT;
#MODEI AND #MODE2 ARE THE NUMBER OF MC/DC AND SC-MCC
COMBINATIONS GENERATED USING CBMC, RESPECTIVELY.).

#C MC/DC #Model #Mode2 | MCC
N | N+1 [2N | - <<2N [oN
1 2 2 2 2 2
2 3 4 3 3 4
3 4 6 4 5 8
4 5 8 5 7 16
5 6 10| 6 11 32
6 7 12 | 7 15 64
7 8 14 | 8 23 128
8 9 16 | 9 31 256
9 10 18 | 10 50 512
10 | 11 20 | 11 69 1024
11| 12 22 | 12 107 2048
121 13 24 | 13 145 4096
13| 14 26 | TO(hr) | 233 8192
14| 15 28 | TO(1 hr) | 321 16384
15| 16 30 | TO(1 hr) | 497 32768
16 | 17 32 | TO(hr) | 673 65536
17 | 18 34 | TO(hr) | 937 131072
18 | 19 36 | TO(1 hr) | 1201 262144
19 | 20 38 | TO(1 hr) | 1729 524288
20 | 21 40 | TO(hr) | 2257 1048576

4. RESULTS AND DISCUSSION

For experiments, we considered one sample C program as
shown in Appendix A. Listing 4 with 20 predicates, and it’s

65

annotated version in Listing 5! [32]. The predicates are in
ascending order, with the total number of atomic conditions
present being the same as the predicate serial number. For
example, Predicate 2 has two atomic conditions, and Predicate
20 has twenty atomic conditions.

To demonstrate our view, we considered the document pre-
sented in [27], which shows the most recent advancements in
MC/DC versions along with their detailed analysis. The em-
pirical data for the average coverage test set size for common
solvable expressions and the number of minimal test sets were
presented in this document. In this work, we are interested in
showing the size of the test set and the total number of possible
minimal test sets required for any expression with a certain
number of atomic conditions. Specifically, there are 10 unique
Boolean expressions for predicates with two conditions, 52 for
predicates with three conditions, 56 for predicates with four
conditions, 70 for predicates with five conditions, and 46 for
predicates with six conditions.

TABLE 11
TOTAL CHECKS AND TIME TAKEN BY AVERAGE MC/DC TEST SETS FOR
DIFFERENT CONDITIONS COUNT. (NOTE: #C IS THE CONDITION COUNT;
MSIZE 1S THE AVG. MC/DC TEST SET SIZE; #MSETS IS THE AVG.
MC/DC TEST SETS; 1 CHECK = 1 TIME UNIT; TTIME IS THE TOTAL TIME.)

#C | MSize | #MSets | #Checks | TTime
1 2 1 2 2
2 3 1 3 3
3 4 1 4 4
4 5 2 10 10
5 6 4 24 24
6 7 10 70 70

We extracted data from [27] to display the size of test sets and
the total number of test sets (choices required for MC/DC).
We considered the basic version of MC/DC Unique Cause
with Context-Dependent that shows the minimum choices
required (whole numbers, instead of floating-point values, are
considered here). Columns 2 and 3 in Table II show the useful
data that was extracted. Note that the truth combinations for
any Boolean expression are computed statically. To generate
a test input for a particular truth combination/test sequence,
we need to check its model availability. The test input for the
test sequence can only be generated if the constraint solver
proves the test sequence as SATISFIABLE. Additionally, to
prove that the test sequence is UNSATISFIABLE and that a
test input cannot be generated, we need to check again with
the constraint solver.

To achieve maximum coverage and discover all the bugs in
the code, one needs to check all the Test Sets/Choices. This
is necessary because it cannot be validated that any selected
set/choice has achieved optimal MC/DC unless it has achieved
100% coverage with the first set itself. Certainly, there is a

IFor space issues we have shown part of the program so that readers can
look at the paper and understand the annotations. For the full version of the
programs readers are recommended to refer [32].

need to check with another minimal test set as well. Existing
work, like CBMC (a state-of-the-art for BMC) with coverage
mode (see Table I), selects a random N+1 test sequence and
shows the satisfiability of the sequence.

TABLE III
TIME EFFORT COMPARISON FOR MC/DC, SC-MCC, AND MCC. (NOTE:
#C IS THE CONDITION COUNT; MT, ST AND MCT ARE THE TOTAL TIME
TAKEN TO PROVE MC/DC, SC-MCC AND MCC TEST SEQUENCES,
RESPECTIVELY.)

#C | MT (s) | ST (s) | MCT (s)
1 2 2 2
2 3 3 4
3 4 5 8
4 10 7 16
5 24 11 32
6 70 15 64
TABLE IV

THE ESTIMATED TIME DATA MC/DC TEST SEQUENCES WITH AVERAGE OF
15 MINIMAL MC/DC TEST SETS. SINCE ACTUAL DATA FOR MC/DC AND
CBMC-MC/DC 1S MISSING WE HAVE NOT COMPUTED THE ESTIMATED
DATA BEYOND 12 ATOMIC CONDITIONS IN A BOOLEAN EXPRESSION.
(NOTE: #C IS THE CONDITION COUNT; MT, ST AND MCT ARE THE TOTAL
TIME TAKEN TO PROVE MC/DC, SC-MCC AND MCC TEST SEQUENCES,
RESPECTIVELY.)

#C | MT (s) ST (s) | MCT (s)
(N+D) X 15=7?)

7 8§X15=120 | 23 128

8 9X15=135 | 31 256

9 10 X 15 =150 | 50 512

10 11 X 15 =165 | 69 1024

11 12 X 15 =180 | 107 2048

12 13X 15=195 | 145 4096

To calculate the total number of checks needed for all MC/DC
test inputs, we require Column 4 in Table II, which represents
the product of Columns 2 and 3. Additionally, we assume that
each sequence takes an equal amount of time units (refer to
Column 5 in Table II). By analyzing the data from Tables I and
II, we can derive the information regarding the potential time
consumption for MC/DC, SC-MCC, and MCC, as illustrated
in Table III.

In Table III, Column 2 displays the time efforts required
for MC/DC sequences. To enhance the confidence in code
coverage, we need to verify all the minimal sets. At a certain
point, these checks rise to a peak, making the generation of
MC/DC test cases very expensive, as illustrated in Fig. 3.
For instance, consider the last row, which indicates a Boolean
expression with 6 atomic conditions. It requires 70 checks/test
sequences (some of which may be redundant), surpassing even
that of MCC. However, SC-MCC requires only 15 checks/test
sequences to achieve optimal code coverage and provide high
confidence that all the bugs have been detected. It’s worth
noting that existing MC/DC and MCC methods are very ex-

80

Total Time for proving MC/IDC Test (sec)

Condition Count

Figure 3. Time efforts required for MC/DC sequences.

== MC/DC == SC-MCC mcc

Total Time for proving Test Sequences (sec)

1 2 3 4 5 6

Condition Count

Figure 4. Time efforts required for MC/DC, SC-MCC and
MCC Test sequences.

== MC/DC == SC-MCC mcc

1000

500

100

50

Estimated time for proving Test Sequences

Condition Count

Figure 5. Estimated Time efforts required for MC/DC, SC-
MCC and MCC Test sequences.

pensive and impractical. The information on the total number
of required test sequences for MC/DC and CBMC-MC/DC
(see Table I) can ensure optimal code coverage is achieved.
To increase code coverage and error detection probability, one
needs to check all possible choices [27] and follow Table II
for Optimal MC/DC test cases (which can be very expensive,
as shown in Table III).

To estimate the trend of computing the average minimum
number of test sets for Boolean expressions with different
atomic conditions in increasing order, we assume that for a
predicate with 6 atomic conditions, average minimal MC/DC
test sets can be computed in 15 units. Note that, in real-
time, computation time units change dynamically and could
be very high. Table IV presents the time efforts required for
different checks for MC/DC, SC-MCC, and MCC. Here, MCC
exhibits an exponential increase and thus cannot be considered
a stronger solution. The corresponding graphs are illustrated
in Figures 4 and 5. From Table 1V, it is evident that MC/DC
is very expensive and may become impractical at a certain
point. Therefore, the optimal solution is to adopt the SC-MCC
technique, which assures optimal code coverage and a high
bug detection rate. Furthermore, SC-MCC is linear in nature
compared to other methods.

5. CONCLUSION

It is reasonable to argue that MCC-based test cases have
greater bug-finding capabilities than MC/DC. Since MCC gen-
erates all possible test cases, it provides more comprehensive
coverage of the conditions in a predicate, making it more
effective in identifying faults that may be missed by MC/DC.
Moreover, because MCC generates all possible test cases, it
can identify faults that may not be related to independent pairs
of conditions but rather arise from the interaction of multiple
conditions. This makes MCC more effective in detecting faults
that are not covered by MC/DC. Studies have shown that SC-
MCC techniques can enhance the fault-finding capabilities of
traditional MC/DC. For example, in [29], SC-MCC detects
100% of faults, compared to the 95.23% fault detection rate
achieved by traditional MC/DC. In our future work, we plan
to experiment with certain benchmark programs to validate the
proposed framework implemented with well-known automated
test case generation techniques such as Model Checking,
Fuzzing, and Dynamic Symbolic Execution.

ACKNOWLEDGEMENT

This work is sponsored by IBITF, Indian Institute of Technol-
ogy (IIT) Bhilai, under the grant of PRAYAS scheme, DST,
Government of India.

REFERENCES

[1] S. K. Barisal, S. P. S. Chauhan, A. Dutta, S. Godboley,
B. Sahoo, and D. P. Mohapatra, “Boompizer:
Minimization and prioritization of concolic based
boosted mc/dc test cases,” Journal of King Saud

University - Computer and Information Sciences,
vol. 34, no. 10, Part B, pp. 9757-9776, 2022. [Online].

67

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(11]

(12]

[13]

Available: https://www.sciencedirect.com/science/article/
pii/S1319157821003414

S. Godboley, A. Dutta, D. P. Mohapatra, and R. Mall,
“Scaling modified condition/decision coverage using dis-
tributed concolic testing for java programs,” Computer
Standards & Interfaces, vol. 59, pp. 61-86, 2018.

M. R. Golla and S. Godboley, “Gmutant: A gcov
based mutation testing analyser,” in Proceedings of the
16th Innovations in Software Engineering Conference,
ser. ISEC ’23. New York, NY, USA: Association
for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3578527.3578546

G. M. Rani and S. Godboley, “Poster: A gcov based
new profiler, gmcov, for mc/dc and sc-mcc,” in 2022
IEEE Conference on Software Testing, Verification and
Validation (ICST), 2022, pp. 469—-472.

Z. Awedikian, K. Ayari, and G. Antoniol, “Mc/dc au-
tomatic test input data generation,” in Proceedings of
the 11th Annual Conference on Genetic and Evolution-
ary Computation, ser. GECCO ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p.
1657-1664.

A. Dupuy and N. Leveson, “An empirical evaluation
of the mc/dc coverage criterion on the hete-2 satellite
software,” in 19th DASC. 19th Digital Avionics Systems
Conference. Proceedings (Cat. No.0OCH37126), vol. 1,
2000, pp. 1B6/1-1B6/7 vol.1.

S. Godboley and A. Dutta, “Dy-copeca: A dynamic
version of mc/dc analyzer for ¢ program,” 01 2021, pp.
197-204.

S. Godboley, A. Dutta, D. Mohapatra, and R. Mall,
“Gecojap: A novel source-code preprocessing technique
to improve code coverage,” Computer Standards & In-
terfaces, vol. 55, 04 2017.

M. A. Almeida, J. de Melo Bezerra, and C. M. Hirata,
“Automatic generation of test cases for critical systems
based on mc/dc criteria,” in 2013 IEEE/AIAA 32nd
Digital Avionics Systems Conference (DASC), 2013, pp.
7C5-1-7C5-10.

J. Guan, J. Offutt, and P. Ammann, “An industrial case
study of structural testing applied to safety-critical em-
bedded software,” in Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engi-
neering, ser. ISESE 06. New York, NY, USA: Associ-
ation for Computing Machinery, 2006, p. 272-277.

H. Lougee, “Software considerations in airborne systems
and equipment certification,” 2001. [Online]. Available:
https://api.semanticscholar.org/CorpusID:5959053

A. Dutta, S. S. Srivastava, S. Godboley, and D. P.
Mohapatra, “Combi-fl: Neural network and sbfl based
fault localization using mutation analysis,” Journal of
Computer Languages, vol. 66, p. 101064, 2021.

M. P. Heimdahl, M. W. Whalen, A. Rajan, and M. Staats,
“On mc/dc and implementation structure: An empirical
study,” in 2008 IEEE/AIAA 27th Digital Avionics Systems
Conference, 2008, pp. 5.B.3-1-5.B.3-13.

[14] J. Jaffar, R. Maghareh, S. Godboley, and X.-L. Ha,
“Tracerx: Dynamic symbolic execution with interpolation
(competition contribution),” in Fundamental Approaches
to Software Engineering, H. Wehrheim and J. Cabot, Eds.
Cham: Springer International Publishing, 2020, pp. 530-
534.

[15] V. T. GmbH, “Testwell ctc++ test coverage analyser.”

[16] R. Systems, “Qualification of rapicover for mc/dc cover-
age of do-178b level-a software.”

[17] D. Holling, S. Banescu, M. Probst, A. Petrovska, and

A. Pretschner, “Nequivack: Assessing mutation score

confidence,” in 2016 IEEE Ninth International Confer-

ence on Software Testing, Verification and Validation

Workshops (ICSTW), 2016, pp. 152-161.

M. N. Zafar, W. Afzal, and E. Enoiu, “Evaluating

system-level test generation for industrial software: A

comparison between manual, combinatorial and model-

based testing,” in Proceedings of the 3rd ACM/IEEE

International Conference on Automation of Software Test,

ser. AST °22. New York, NY, USA: Association for

Computing Machinery, 2022, p. 148-159.

K. Ghani and J. A. Clark, “Automatic test data generation

[18]

[19]

Fourth International Conference on Software Engineer-
ing Advances, 2009, pp. 152—-157.

Y. Yang, “Improve model testing by integrating bounded
model checking and coverage guided fuzzing,” Electron-
ics, vol. 12, no. 7, 2023.

G. Coskun, C. Coskun, H. Mercan, and C. Yilmaz, “Us-
ing unified combinatorial interaction testing for mc/dc
coverage,” in 2022 IEEE International Conference on
Software Testing, Verification and Validation Workshops
(ICSTW). Los Alamitos, CA, USA: IEEE Computer
Society, apr 2022, pp. 57-62.

[20]

[21]

[22]

L. C. Jaw, H. T. Van, D. Homan, V. Crum, W. Chou, i

01 2001.

S. A. Vilkomir and J. P. Bowen, “From mc/dc to rc/dc:
formalization and analysis of control-flow testing crite-
ria,” Formal Aspects of Computing, vol. 18, pp. 4262,
2006.

(28]

[29] S. Kandl and S. Chandrashekar, “Reasonability of
mc/dc for safety-relevant software implemented
in programming languages with short-circuit

evaluation,” in /6th IEEE International Symposium on
Object/component/service-oriented Real-time distributed
Computing (ISORC 2013), 2013, pp. 1-6.

[30] F. S. Foundation, “gcov-a test coverage program in:
Using the gnu compiler collection (gcc),” 02 2010.

[31] M. R. Golla, “Automated sc-mcc test case generation,”
in 15th Innovations in Software Engineering Conference,
ser. ISEC 2022. New York, NY, USA: ACM, 2022.

[32] “Figshare Data: Listings,” 2021,
https://figshare.com/s/42bfeb5db3728c829501.

APPENDIX A: CASE STUDY

#include <stdio.h>

] et . > #include <assert.h>
for multiple condition and mcdc coverage,” in 2009 -

s scanf ("%d”
o scanf ("%d”

K. Keller, K. Swearingen, and T. Smith, “Model-based
approach to validation and verification of flight critical
software,” in 2008 IEEE Aerospace Conference, 2008, -

pp- 1-8.
[23]

C. Singh, J. Shivamurthy, and A. Garg, “Model based test .
framework for verification of flight control software,” in »

2023 International Conference on Computer, Electrical”

& Communication Engineering (ICCECE), 2023, pp. 1-

5
[24]

C. Wang, H. Sun, H. Dou, H. Chen, and J. Liu, “Mc/dcf
test case automatic generation for safety-critical sys-
tems,” in 2022 IEEE 22nd International Conference on s i

Software Quality, Reliability and Security (QRS), 2022,

pp. 732-743.

[25] D. Kroening and M. Tautschnig, “Cbmc — ¢ bounded;,

model checker,” vol. 8413, 04 2014, pp. 389-391.

[26] S. Rayadurgam and M. Heimdahl, “Generating mc/dc ,,
adequate test sequences through model checking.” 01

2003, p. 91.
[27] J. Chilenski, “An investigation of three forms of the
modified condition decision coverage (mcdc) criterion,”

40

a1 i

68

s if ((a >

7 if

#include <math.h>
#include <stdlib .h>
int main ()

int a,b,c,d;

&a);
,&b)
,&c);
,&d)

scanf ("%d”
scanf ("%d”

10))

print (”Predicate 17);

(C a>
print(”

10) || (b < 10))
Predicate 27);

(((a> 10) && (b < 10))
print (”Predicate 37);

Il (e 10))

((C a> 10) && (b < 10))

10)))
print(”Predicate 47);

| ((c == 10) && (d !=

(((C a>10) & (b < 10))
10))) || (a == 10))
print(”Predicate 57);

[1 (Cc 10) && (d !=

(((C a>10) && (b < 10))
10))) || ((a == 10) ||
print (”Predicate 67);

[l
(b !=

((c ==
10)))

10) && (d !=

if ((((a> 10) & (b < 10))
10))) || (((a 10) ||

print (”Predicate 77);

[l ((c ==
(b != 10))

10) && (d !=
&& (c > 10)))

10) && (b < 10))
(((a == 10) |[]
10))))

[l (Cc
(b != 10)) && ((c >

10) && (d !=
10)

a >
|

|
d <

80

print (”Predicate 87);

((((C a>10) & (b < 10)) || ((c == 10) && (d !=
10))) || (((a == 10) || (b != 10)) && ((c > 10)
| (d< 10))) & (a <= 10))

print (”Predicate 97);

((((C a> 10) & (b < 10)) || ((c == 10) & (d !=
10))) || (((a == 10) || (b != 10)) && ((c¢ > 10)
| (d< 10)))) && ((a <= 10) & (b >= 10)))

print(”Predicate 107);

((((C a>10) && (b < 10)) || ((c == 10) && (d !=
10))) || (((a == 10) [| (b != 10)) & ((c > 10)
| (d< 10)))) & (((a <= 10) & (b >= 10)) ||
(¢ <= 10)))

print (”Predicate 117);

((((C a>10) && (b < 10)) || ((c == 10) && (d !=
10))) || (((a == 10) || (b != 10)) && ((c > 10)
| (d< 10))) && (((a <= 10) && (b >= 10)) ||
((c <= 10) && (d >= 10))))

print (7 Predicate 127);

(CCCCCC a> 10) && (b < 10)) || ((c == 10) && (d
1= 10))) || (((a == 10) [| (b != 10)) & ((c >
10) || (d< 10)))) && (((a <= 10) && (b >= 10))
| ((c <= 10) && (d >= 10))))) || (a != 10))

print (" Predicate 137);

((((((C a> 10) && (b < 10)) || ((c == 10) && (d

= 10))) [| (((a == 10) [| (b != 10)) && ((c >
10) || (d< 10)))) && (((a <= 10) && (b >= 10)) 5
[| ((c <= 10) & (d >= 10))))) || ((a != 10) & |
(b !'= 10)))

print(”Predicate 147);

(CCCCCC a> 10) && (b < 10)) || ((c == 10) && (d

1= 10))) || (((a == 10) || (b != 10)) && ((c >
10) || (d< 10)))) & (((a <= 10) && (b >= 10)) ,
[| ((c <= 10) && (d >= 10))))) || (((a != 10)

&& (b != 10)) || (c != 10)))

print (" Predicate 157);

(CCCCCC a> 10) & (b < 10)) || ((c == 10) && (d
1= 10))) || (((a == 10) || (b != 10)) & ((c >
10) [| (d < 10)))) && (((a <= 10) && (b >= 10))

| ((c <= 10) && (d >= 10))))) || (((a !=
& (b != 10)) || ((c != 10) && (d != 10))))
print (”Predicate 167);

10)

(((((((a> 10) & (b < 10)) || ((c == 10) & (d
1= 10))) || (((a == 10) || (b 1= 10)) && ((c >
10) [| (d< 10)))) & (((a <= 10) & (b >= 10))

[((c <= 10) && (d >= 10))))) ||
&& (b 1= 10)) ||
a> 10)))
print (”Predicate 177);

(((Ca != 10)
((c 1= 10) && (d != 10))) && (

(CCCCCC a> 10) && (b < 10)) || ((c == 10) && (d
1= 10))) || (((a == 10) || (b != 10)) & ((c >
10) || (d< 10)))) && (((a <= 10) && (b >= 10))

Il ((c <= 10) && (d >= 10))))) ||
&& (b != 10)) || ((c

((((a !'= 10)
= 10) && (d != 10))) &&

((C a> 10) && (b < 10)))))
print (7 Predicate 187);

if (((((CC a>10) && (b < 10)) || ((c == 10) && (d
= 10))) || (((a == 10) || (b != 10)) & ((c >
10) [| (d< 10)))) && (((a <= 10) && (b >= 10))

[((c <= 10) && (d >= 10))))) || ((((a != 10)

&& (b !'= 10)) || ((c != 10) && (d != 10))) &&
((C a>10) & (b < 10)) || (c == 10))))
print (7 Predicate 197);

if ((CC((C a>10) && (b < 10)) || ((c == 10) && (d

1= 10))) ||
10) ||
| ((c <= 10) & (d >= 10))))) || ((((a != 10)

&& (b !'= 10)) || ((c != 10) && (d != 10))) &&
(((a> 10) && (b < 10)) || ((c == 10) && (d !=
10)))))

print (”Predicate 207);

(((a == 10) || (b != 10)) && ((c >

return 0;

}

Listing 4. This program is a sample C program with 20 predicates.

> #include <stdio .h>
5 #include <assert.h>

#include <math.h>

s #include <stdlib .h>

23 __CPROVER_cover (!
21 __CPROVER_cover (!

Cif (Ca > 10) ||

int main()

{

int a,b,c,d;

int a= nondet_int(); __CPROVER_input(”a”, a);
int b= nondet_int(); __CPROVER_ input(”b”, b);
int ¢c= nondet_int(); __CPROVER_input(”c”, ¢);
int d= nondet_int(); __CPROVER_input(”d”, d);

it ((a> 10))
print (”Predicate 17);

__CPROVER_cover (! (!(a>10)&&!(b<10)));
__CPROVER_cover (! (!(a>10)&&b<10));
__CPROVER_cover (! (a>10));

(b < 10))
print(”Predicate 27);

(1(a>10)&&!(c==10)));
(1(a>10)&&c==10));

»5 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)));

» __CPROVER_cover (! (a>10&&!(b<10)&&c==10));

27 __CPROVER_cover (! (a>10&&b<10));

» __CPROVER_cover (!
13 __CPROVER_cover (!

3 __CPROVER_cover (!
7 __CPROVER_cover (!

1+ __CPROVER_cover (!
13 __CPROVER_cover (!

44

69

if (((a>10) & (b < 10)) []
print(”Predicate 37);

(c == 10))

__CPROVER_cover (! (!(a>10)&&!(c==10)));
(!(a>10)&&c==10&&!(d!=10)));
(1'(a>10)&&c==10&&d !=10));
__CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)));

__CPROVER_cover (!

(a>10&&!(b<10)&&c==10&&d !=10));
(a>10&&b<10))
if (((a>10) & (b < 10)) || ((c
10)))
print (" Predicate 47);

10) && (d !=

__CPROVER_cover (! (!(a>10)&&!(c==10)&&!(a==10)));
(1(a>10)&&!(c==10)&&a==10));
(1(a>10)&&c==10&&!(d!=10)&&!(a
==10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&a==10)

(d< 10)))) && (((a <= 10) && (b >= 10))

(a>10&&!(b<10)&&c==10&&!(d!=10)))

60

64

66

86

s __CPROVER_cover (!
v __CPROVER_cover (!

5 __CPROVER_cover (!

» __CPROVER_cover (!

3 __CPROVER_cover (!

7 __CPROVER_cover (!

s __CPROVER_cover (!

5 __CPROVER_cover (!

3 __CPROVER_cover (!

5 __CPROVER_cover (!

)

(! (a>10)&&c==10&&d!=10));

(a>10&&!(b<10)&&!(c==10)&&!(a==10)
) Vs

__CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a==10))

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)
&&!(a==10)));

__CPROVER_cover (!
==10));

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&d!=10));

__CPROVER_cover (! (a>10&&b<10));

if ((((a> 10) && (b < 10)) || ((c¢ ==
10))) || (a == 10))
print(”Predicate 57);

(a>10&&!(b<10)8&c==10&&!(d!=10)&&a

10) && (d !=

(1(a>10)&&!(c==10)&&!(a==10)&&!(b
1=10)));
__CPROVER_cover (!
1=10));

__CPROVER_cover (! (!(a>10)&&!(c==10)&&a==10));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&!(b!=10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&b!=10));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&a==10)
DE

__CPROVER_cover (!

(1(a>10)&&!(c==10)&&!(a==10)&&b

(1(a>10)&8&c==10&&d !=10));

(a>10&&!(b<10)&&!(c==10)&&!(a==10)

&&!(b1=10)));

(a>10&&!(b<10)&&!(c==10)&&!(a==10)
&&b'1=10));

__CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a==10))

. __CPROVER_cover(! (a>10&&!(b<10)&&c==10&&!(d!=10)

&&!(a==10)&&!(b!=10)));

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)
&&!(a==10)&&b!=10));

(a>10&&!(b<10)&&c==10&&!(d!=10)&&a
==10));

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&d!=10));

__CPROVER_cover (! (a>10&&b<10));

i ((((a>10) & (b < 10)) || ((c ==
10))) || ((a == 10) || (b != 10)))
print (”Predicate 67);

10) && (d !=

(1(a>10)&&!(c==10)&&!(a==10)&&!(b
1=10)));
__CPROVER_cover (! (!(a>10)&&!(c==10)&&!(a==10)&&b
1=10&&!(c>10)));
(1(a>10)&&!(c==10)&&!(a==10)&&b
1=10&&c>10));
__CPROVER_cover (!
) D8
__CPROVER_cover (! (!(a>10)&&!(c==10)&&a==10&&c>10))

(1(a>10)&&!(c==10)&&a==10&&!(c >10)

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&!(b!=10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&b!=10&&!(c>10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&b!=10&&c>10));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&a
==10&&!(c>10)));

__CPROVER_cover (!
c>10));
(!'(a>10)&&c==10&&d !=10));
__CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10)

&&!(b!=10)));

(a>10&&!(b<10)&&!(c==10)&&!(a==10)
&&b!=10&&!(c>10)));

__CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10)
&&b!=10&&c>10));

__CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a

(1(a>10)&&c==10&&!(d !=10)&&a==10&&

88

=

90

91

99

100

101
102
103

104

105
106

10

108

110

111

> __CPROVER_cover (!

12

125

126

127

128

70

35 __CPROVER_cover (!

5 __CPROVER_cover (!

; __CPROVER_cover (!

5 __CPROVER_cover (!

» __CPROVER_cover (!

==10&&!(c>10)));

__CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a==10&&c
>10));

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)
&&!(a==10)&&!(b!=10)));

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)
&&!(a==10)&&b!=10&&!(c>10)));

__CPROVER_cover (! (a>10&&!(b<10)8&&c==10&&!(d!=10)
&&!(a==10)&&b!=10&&c>10));

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)&&a
==10&&!(c>10)));

(a>10&&!(b<10)&&c==10&&!(d!=10)&&a
==10&&c>10));

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&d!=10));

(a>10&&b<10));

it ((((a> 10) & (b < 10)) || ((c == 10) && (d !=
10))) || (((a == 10) || (b != 10)) && (c > 10)))
print (”Predicate 77);
if((((a> 10) & (b < 10)) || ((c == 10) && (d !=
10))) || (((a == 10) || (b != 10)) && ((c > 10)
[| (d< 10))))
print(”Predicate 87);
it (((((a> 10) & (b < 10)) || ((c == 10) && (d !=
10))) || (((a == 10) || (b != 10)) && ((¢ > 10)
[(d < 10)))) && (a <= 10))
print(”Predicate 97);

__CPROVER_cover (!
1=10)));
__CPROVER_cover (! (!(a>10)&&!(c==10)&&!(a==10)&&b
1=10&&!1(c>10)&&!(d<10)));
__CPROVER_cover (! (!(a>10)&&!(c==10)&&!(a==10)&&b
1=10&&!(c >10)&&d<10&&!(a<=10)));
__CPROVER_cover (! (!(a>10)&&!(c==10)&&!(a==10)&&b
1=10&&!(c >10)&&dA<10&&a <=10&&!(b>=10)));
__CPROVER_cover (! (!(a>10)&&!(c==10)&&!(a==10)&&b
1=10& & ! (¢ >10)&&A<10&&a<=10&&b >=10)) ;
__CPROVER_cover (! (!(a>10)&&!(c==10)&&!(a==10)&&b
1=10&&c >10&&!(a<=10)));
('(a>10)&&!(c==10)&&!(a==10)&&b
1=10& & c>10&&a <=10&&!(b>=10)));
__CPROVER_cover (! (!(a>10)&&!(c==10)&&!(a==10)&&b
1=10& & ¢ >10&&a<=10&&b >=10)) ;
(1(a>10)&&!(c==10)&&%a==10&&!(c >10)

(1(a>10)&&!(c==10)&&!(a==10) &&!(b

&&!(d<10)))

(!'(a>10)&&!(c==10)&&a==10&&!(c >10)
&&d<10&&!(a<=10)));

__CPROVER_cover (! (!(a>10)&&!(c==10)&&a==10&&!(c>10)
&&d<10&&a <=10&&!(b>=10)));

__CPROVER_cover (! (!(a>10)&&!(c==10)&&a==10&&!(c>10)
&&d<10&&a<=10&&b >=10)) ;

__CPROVER_cover (! (!(a>10)&&!(c==10)&&a==10&&c
>10&&!(a<=10)));

__CPROVER_cover (! (!(a>10)&&!(c==10)&&a==10&&c>10&&a
<=10&&!(b>=10)));

__CPROVER_cover (! (!(a>10)&&!(c==10)&&a==10&&c>10&&a
<=10&&b >=10)) ;

(1(a>10)&&c==10&&!(d!=10) &&!(a
==10)&&!(b!=10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&b!=10&&!(c >10)&&!(d<10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&b!=10&&!(c >10)&&d <10&&!(a<=10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&b!=10&&!(c >10)&&d<10&&a <=10&&!(b>=10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&b!=10& & !(c >10)&&d<10&&a<=10&&b >=10)) ;

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a
==10)&&b!=10&&c >10&&!(a<=10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&!(a

_CPROVER_cover (!
_CPROVER_cover (!
_CPROVER_cover (!
_CPROVER_cover (!

_CPROVER_cover (!

==10)&&b!=10&&c >10&&a <=10&&!(b>=10)));

(1 (a>10)&&c==10&&!(d!=10) &&!(a
==10)&&b!=10&& c >10&&a <=10&&b >=10)) ;
(1(a>10)&&c==10&&!(d!=10)&&a
==10&&!(c>10)&&!(d<10)));
('(a>10)&&c==10&&!(d!=10)&&a
==10&&!(c>10)&&d <10&&!(a<=10)));
('(a>10)&&c==10&&!(d!=10)&&a
==10&&!(c >10)&&d<10&&a <=10&&!(b>=10)));
(1(a>10)&&c==10&&!(d!=10)&&a
==10&&!(c >10)&&d <10&&a <=10&&b >=10)) ;

165

166

==10&&!(c>10)&&d<10&&!(a<=10))) ;

CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)&a
==10&&!(c > 10)&&d<10&&a <=10&&!(b>=10))):

CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)&&a
==10&&!(c > 10)&&d<10&&a<=10&&b >=10)) ;

CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)&&a
==10&&c >10&&!(a<=10)));

CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)&&a
==10&&c>10&&a <=10&&!(b>=10)));

CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)&&a
==10&&c>10&&a<=10&&b>=10)) :

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&a==10&& 170
c>10&&!(a<=10)));

s __CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&a==10&& 17|
c>10&&a <=10&&!(b>=10)));

__CPROVER_cover (! (!(a>10)&&c==10&&!(d!=10)&&a==10&& 17>
c>10&&a<=10&&b >=10));

137 __CPROVER_cover (! (!(a>10)&&c==10&&d!=10&&!(a<=10)) 173
)3 174

__CPROVER_cover (! (!(a>10)&&c==10&&d!=10&&a<=10&&!(b 175

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&d!=10&&!(a
<=10)));

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&d!=10&&a
<=10&&!(b>=10)));

__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&d!=10&&a
<=10&&b >=10));

__CPROVER_cover (! (a>10&&b<10&&!(a<=10)));

__CPROVER_cover (! (a>10&&b<10&&a<=10&&!(b>=10)));

__CPROVER_cover (! (a>10&&b<10&&a<=10&&b>=10)) ;

>=10))); 76 if ((((C a> 10) && (b < 10)) || ((c == 10) && (d !=
139 __CPROVER_cover (! (!(a>10)&&c==10&&d!=10&&a<=10&&b 10))) || (((a == 10) || (b != 10)) && ((c¢ > 10)
>=10)); [| (d< 10)))) & ((a <= 10) && (b >= 10)))
140 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10) 177 print(”Predicate 107);
&&!(b!=10))); 178
141 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10) 179 ...
&&b!1=10&&!(c>10)&&!(d<10))); 0 if ((((C a> 10) && (b < 10)) || ((c == 10) && (d !=
12 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10) 10))) || (((a == 10) || (b != 10)) && ((c¢ > 10)
&&b!1=10&&!(c >10)&&d<10&&!(a<=10))); [| (d< 10)))) & (((a <= 10) && (b >= 10)) ||
143 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10) (c <= 10)))
&&b!1=10&&!(c >10)&&d<10&&a <=10&&!(b>=10))); 181 print (”Predicate 117);
144 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10) %
&&b!1=10&&!(c >10)&&d<10&&a<=10&&b >=10)) ; 183 ...
145 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10) 15+ if (((((a > 10) && (b < 10)) || ((c == 10) && (d !=
&&b!1=10&&c >10&&!(a<=10))); 10))) || (((a == 10) || (b != 10)) && ((c > 10)
146 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10) [| (d< 10)))) && (((a <= 10) && (b >= 10)) ||
&&b!=10& & c>10&&a <=10&&!(b>=10))); ((c <= 10) && (d >= 10))))
147 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&!(a==10) 135 print(”Predicate 127);
&&b!1=10& & c>10&&a <=10&&b >=10)) ; 186
143 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a 187 ...
==10&&!(c>10)&&!(d<10))); s if ((C(C(C a> 10) & (b < 10)) || ((c == 10) && (d
1499 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a 1= 10))) || (((a == 10) || (b != 10)) && ((¢c >
==10&&!(c >10)&&d <10&&!(a <=10))); 10) || (d< 10)))) && (((a <= 10) && (b >= 10))
150 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a [| ((¢c <= 10) && (d >= 10))))) || (a != 10))
==10&&!(¢c >10)&&A<10&&a <=10&&!(b>=10))); 189 print (”Predicate 137);
151 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a 190
==10&&!(c >10)&&d<10&&a<=10&&b >=10)) ; 191
52 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a==10&&¢ 19
>10&&!(a<=10))); 193
153 __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a==10&&c 194
>10&&a <=10&&!(b>=10))); 195
15+ __CPROVER_cover (! (a>10&&!(b<10)&&!(c==10)&&a==10&&c 196 if (((((((a > 10) && (b < 10)) || ((¢ == 10) && (d
>10&&a<=10&&b >=10)) ; 1= 10))) || (((a == 10) || (b != 10)) && ((c >
155 __CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10) 10) || (d< 10)))) && (((a <= 10) && (b >= 10))
&&!(a==10)&&!(b!=10))); [| ((¢ <= 10) && (d >= 10))))) || ((((a != 10)
156 __CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10) && (b !'= 10)) || ((c != 10) && (d != 10))) &&
&&!(a==10)&&b!=10&&!(c >10)&&!(d<10))); (((a> 10) & (b < 10)) || (c == 10))))
157 __CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10) 197 print(”Predicate 197);
&&!(a==10)&&b!=10& & !(c >10)&&d <10&&!(a<=10))); 19
155 __CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10) 199 ...
&&!(a==10)&&b!=10& & !(c >10)&&d<10&&a <=10&&!(b 200 if (CCCCCC a> 10) && (b < 10)) || ((¢ == 10) && (d
>=10))); 1= 10))) || (((a == 10) || (b != 10)) && ((c >
150 __CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10) 10) || (d< 10)))) && (((a <= 10) && (b >= 10))
&&!(a==10)&&b!=10& & !(c >10)&&d <10&&a <=10&&b >=10) [| ((¢ <= 10) && (d >= 10))))) || ((((a != 10)
) && (b !'= 10)) || ((c != 10) && (d != 10))) &&
150 __CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10) (((a> 10) && (b < 10)) || ((¢ == 10) && (d !=
&&!(a==10)&&b!=10&&c>10&&!(a<=10))); 10)))))
161 __CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10) 201 print (”Predicate 207);
&&!(a==10)&&b!=10&&c>10&&a <=10&&!(b>=10))); 20 return 0
12 __CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10) 203 }

&&!(a==10)&&b!=10& & c>10&&a <=10&&b >=10)) ;
163 __CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)&&a
==10&&!(c>10)&&!(d<10)));
__CPROVER_cover (! (a>10&&!(b<10)&&c==10&&!(d!=10)&&a

Listing 5. This program is a sample program to show SC-
MCC sequences for each predicate of size 1 to 6 as presented
in Table III; and of size 7 and 10 as shown in Table IV.

71

