2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)

PRCMHFL: A Fault Localization Technique based on

Predicate Ranking and CMH method

Sangharatna Godboley'*, Shubhank Kulshreshtha?, Prayanshu Agarwal?, B Ranilbala’
1,2:3:4Department of Computer Science and Engineering,
National Institute of Technology, Warangal, Telangana, India
sanghu@nitw.ac.in, {kulshr_971981,agarwa_941942 ranil_971956} @student.nitw.ac.in
*corresponding author

Abstract—Fault localization is an important step in the debug-
ging process, as it targets to identify the root cause of failures
in software systems. Despite the existence of several tech-
niques and tools for fault localization, it remains a challenging
and time-taking task. In this paper, we propose a method for
fault localization that takes the advantages of reduced code
examination in predicate ranking and the effectiveness of the
Cochran—-Mantel-Haenszel (CMH) method. We experiment
using the exam score metric and demonstrate its effectiveness.
It accurately identifying faulty program elements. Our work
represents a significant improvement in fault localization com-
pared to other important SBFL techniques.

Keywords—Fault localization; CMH; Coverage, Testing;

1. INTRODUCTION

Software testing [3, 5, 40, 41, 42, 43] is a critical stage in
ensuring the quality of software products. Even with the best
efforts of developers and testers, software defects / faults can
still skipped. Later they cause issues in production. Finding the
reasons of these faults is a challenging and time-consuming
task. It also requires expertise and several skill. Fault local-
ization is for detecting the defective code segment [11]. It is
a fundamental step in debugging and fixing the software issue
[7, 8, 10, 12].

Fault localization can be approached in several ways [4, 14,
20]. It can be manual inspection or automated techniques
[13, 16]. As per the literature survey, researchers have devel-
oped several techniques and tools to aid in fault localization.
Techniques such as spectrum-based techniques, data mining
approaches, and model-based techniques are considered to be
important. These techniques use various forms of program
execution data, such as execution traces, program spectra, and
program models, to detect the faulty code. Also, there are
debugging, fault localization, and software analytics tools that
can be used to facilitate the fault localization process.
Spectrum-Based Fault Localization (SBFL) [6] techniques are
important in software engineering domain. The main objective
is to detect and localize faults in software systems. These tech-
niques provides information about the coverage of program
elements (such as statements, blocks, and functions) and test
case outcomes to calculate a suspiciousness score for each
element, which can be used to prioritize debugging efforts.

2693-9371/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS-C60940.2023.00085

148

SBFL techniques such as Ample [21], DStar [17], Barinel [6],
crosstab [24], Zoltar [23], and Ochiai [22]. Ample depends on
the intuition that defects/faults are more likely to be located
in code that is executed by failing test cases rather by passing
test cases. Barinel proposed an approach by combining SBFL
with probabilistic reasoning. This is to estimate the probability
that each program element is faulty. Ochiai, like Tarantula,
calculates the suspiciousness score of a program element as the
ratio of the number of failing test cases that cover the element
to the square root of the product of the total number of failing
test cases and the total number of test cases that cover the
element. DStar, on the other hand, uses the binary similarity
coefficient derived from the Kulczynski coefficient to measure
the similarity between the coverage vectors of failing and
passing test cases and uses this information to compute the
suspiciousness score of each program element.

The study [25] revealed that predicates from branch conditions
are the most significant contributors to the Top-1 recall of fault
localization accuracy among all predicates. Using spectrum-
based fault localization formulas for statistical debugging pred-
icates resulted in a significant increase in localization accuracy,
with a 227.9% increase in Top-1 compared to the original sta-
tistical debugging formula and a 52.7% increase compared to
a revised statistical debugging formula. Collecting information
at the statement level increased localization accuracy by 69.9%
with respect to Top-1, although it led to a 40.0% increase in
execution time compared to the method level. These findings
have important implications for the development of more
accurate and efficient fault localization techniques.

2. RELATED WORK

In this section, we present an overview of relevant literature
and approaches in the field of fault localization. We dis-
cuss various fault localization techniques, including program
slicing, spectrum-based methods, machine learning-based ap-
proaches, mutation-based strategies, and miscellaneous meth-
ods. Each technique is summarized briefly, providing a com-
prehensive understanding of the state-of-the-art in fault local-
ization within the context of software development.

2.1. Slice-based Fault Localization

Weiser et al. [32] proposed program slicing to reduce the size
of a program by selecting certain criteria. The criteria being

only those lines/statements that affect the value of a specific
variable at a location in the program. This helps developers to
isolate the portion of the program that may contain faults. Lyle
et al. [33] introduced program dices, which are the intersection
of two program slices. Further these can be narrow down
for the search scope of faulty statements. This will make the
debugging process more efficient.

Korel et al. [34] proposed Dynamic slicing. This creates a
slice of the program that includes only the statements which
are running by a failed test case. It analyzes their effect
on the targeted variables. This will be useful when dealing
with complex programs. Other Program slicing methods have
been proposed, including thin slicing and hybrid slicing. Thin
slicing involves selecting only the statements that directly
affect the variable’s value. On the other hand hybrid slicing
combines both static and dynamic slicing. This is to create a
more comprehensive slice of the program. Different Program
slicing methods can be applied in various scenario for effective
and efficient process.

2.2. Spectrum-based Fault Localization

While slice-based techniques have limitations, as bugs may
not be found within the chosen slice and examining many
statements can be time-consuming, spectrum-based (SBFL)
techniques provide a susceptibility score to each statement
using a mathematical formula that considers execution in-
formation and test case results. SBFL techniques such as
Tarantula, Jaccard, Crosstab, Ochiai, and Barinel require less
code examination than other fault localization techniques. D*
is a well-known SBFL technique. Despite their effectiveness,
SBFL techniques may encounter ties when many statements
have identical suspiciousness scores, and they rely solely on
test results without distinguishing their contributions.

2.3. Machine Learning-based Fault Localization

Machine learning (ML) techniques, including Back Propaga-
tion Neural Networks (BPNN), Radial Basis Function Neu-
ral Networks (RBFNN), and Convolutional Neural Networks
(CNN), have been used for fault localization in software
systems. These algorithms learn patterns between program
features and fault labels to predict the likelihood of a statement
containing a fault. BPNN, RBFNN, and CNN have all been
used successfully in fault localization studies, demonstrating
their effectiveness in real-world applications. Overall, machine
learning-based fault localization shows promise for improving
the efficiency and effectiveness of fault localization.

2.4. Mutation-based Fault Localization

Mutation-based fault localization [31] is a technique that in-
volves introducing small changes to the code and then running
a set of test cases to detect any resulting failures. By comparing
the execution profiles of the original and mutated versions
of the code, mutation-based fault localization can pinpoint
which parts of the code are most likely to contain faults. The
MUSE technique is an extension of traditional mutation-based
fault localization that incorporates a broader range of mutation

149

operators and prioritizes the use of mutations that are more
likely to expose faults. These techniques are powerful tools
for software developers looking to improve the quality and
reliability of their code.

2.5. Miscellaneous Fault Localization Techniques
Some of the miscellaneous fault localization methods include:

o Multiple Fault Localization (MFL) in the refined technique
of software fault localization (SFL). This presents a chal-
lenging yet increasingly pertinent domain [36]. Literature
survey, reveals a growing interest in MFL, particularly over
the last five years, marked by a stable expansion. Among
the MFL debugging approaches, the One-bug-at-a-time
debugging approach (OBA), parallel debugging approach,
and multiple-bug-at-a-time debugging approach (MBA) our
good. The OBA being the most widely used technique.
Singh et al. [35] provide a concise overview of signifi-
cant fault localization techniques employing soft computing
methodologies. It becomes evident that more promising
results can be achieved through the integration of machine
learning techniques, accompanied by a reduction in time
constraints. The main objective of this study is to explore
fault localization techniques in conjunction with soft com-
puting approaches. It aims of minimizing time and space
complexities, thereby enhancing usability and effectiveness.
DeepRLAFL [38] is a fault localization technique that
uses convolutional neural networks for bug localization at
the method and statement levels, significantly enhancing
accuracy over other techniques. All three techniques use
different approaches to improve the accuracy and efficiency
of software debugging.

Traceability-based Fault Localization [37] is the technique
that leverages traceability information between require-
ments, test cases, and code to aid in fault localization. It
explores how code changes relate to specific requirements
and test cases, helping developers pinpoint potential sources
of faults.

3. PROPOSED APPROACH

We have introduced a fault localization method called Pred-
icate Ranking Cochran—-Mantel-Haenszel Fault Localisation
(PRCMHFL), which combines the strengths of Predicate
Ranking [2] and the CMH method [1]. This approach enables
accurate fault identification while reducing the amount of code
that needs to be examined. Our goal is to determine the
suspiciousness score of a given statement ‘s’ in a program
‘P, representing the probability of it containing an error. We
provide a detailed description of PRCMHFL in this section.
The meanings of the symbols that are utilized for our technique
are listed in Table I

3.1. Overview

Fig. 1 illustrates the flow of PRCMHFL. We employ several
components that take different inputs and, ultimately, generate
a ranked list of statements. In this study, we construct a
contingency table for each statement in the program under

PRCMHFL

-

Test Suite —
l Mutants Outputs
GCov ﬁ
Predicate
Extractor

L@

—

i CP

Results

Program
Outputs 9 Predicate
c t Spectra ’
omparator Generator Ranking
Generator

A

i1l

.

Coverage

Predicate
- 2 '
Predicates
Ranked List

Figure 1: Schematic representation of PRCMHFL

TABLE I: Notations used in our proposed approach. Note:
TCs: Test Cases and s: Statement

N #TCs

N, #Success TCs

Ny #Failed TCs
N¢(s) #TCs covered s
Nu(s) #TCs not covered s
Nes(s) #Success TCs covered s
Neg(s) #Failed TCs covered s
Nus(s) | #Success TCs not covered s
Nyy(s) | #Failed TCs not covered s

analysis. The table is two-dimensional, with columns repre-
senting the number of successful and failed test cases and rows
representing the number of statements covered and uncovered
by those test cases. We then conduct a hypothesis test on
each contingency table to determine the relationship between
program execution and coverage results for the corresponding
statement, based on the CMH test. To rank the statements
according to their suspiciousness scores accurately, we follow
the rules as defined in PRFL [2]. We used gcov tool [39] in
our work. It is a static coverage tool used to compute the
execution of the code during a program’s runtime.

3.2. Algorithmic Description

Algorithm 1 shows the Program Spectra Generator (PSG).
The program accepts inputs: ‘statement,” ‘predicate_list, and

150

‘test_cases.” and produces four values: ‘Ncf,” ‘Nus,” ‘Ncs,” and
‘Nuf,”. These values representing specific statistics related to
test cases and program statements. Initially the values are set to
0. For each ‘test_case’ in the ‘test_cases’ it evaluates whether
the ‘statement’ is a predicate or not. If it is a statement,
the algorithm recursively calls itself (‘PSG’) with the next
statement along with the ‘predicate_list’ as inputs. Next, in
case the ‘statement’ is not a decision / predicate but it is
inside a block, then it checks if it is the first statement of the
block or not. Now, whether the ‘test_case’ passed or failed
and whether it covered or uncovered the statement, the values
for ‘Nes,” ‘Nus,” ‘Ncf,” or ‘Nuf’ are updated accordingly. In
case the ‘statement’ does not meet the above conditions, it
will recursively calls itself with the previous statement and the
‘predicate_list” as inputs. At last, it returns the values of ‘Ncf,
‘Nus,” ‘Nes,” and ‘Nuf.” This algorithm plays a important role
in our proposed framework.

3.3. Detailed Description

In this section, we discuss on our work in detailed. The
Output Comparator targets to generate program output using
a predefined set of test cases and mutants. It executes original
and mutated programs on all the test cases to produce the
files. The success of a test case is considered by matching the
outputs of the original and the mutated version of the program.

In case the outputs differ, then the test case is considered
successful otherwise, it is a failed test case.

The Predicate Extractor processes a C-program as input.
It produces a list of predicates using logical and relational
operators. Then it extracts lines / statements that meet the
specified conditions for the analysis.

Algorithm 1: Program Spectra Generator

Data: statement, predicate_list, test_cases

Result: Ncf, Nus, Ncs, Nuf

PSG (statement, predicate_list)

Ncf+O0 ;

Nuf+0 ;

Ncs<+0 ;

Nus<+O0 ;

for test_case in test_cases do

if statement is predicate then

Ncf, Nus, Ncs, Nuf <
PSG(next_statement, predicate_list) ;

else if statement inside block then

if first statement of block then

if test_case passed and covered then
| Ncs< Nes+1

else if test_case passed and uncovered then
| Nus <+ Nus—+1

else if test_case failed and covered then
| Ncf < Ncef+1

else if test_case failed and uncovered then
| Nuf <+ Nuf+1

else

Ncf, Nus, Nes, Nuf +
PSG(prev_statement, predicate_list) ;

else
Ncf, Nus, Ncs,
Nuf < PSG(statement, predicate_list) ;

r;turn Ncf, Nus, Ncs, Nuf

The GCOV Generator program employs the ‘gcov‘ tool [39]
to generate in-depth reports on code execution. It takes as input
a C program and a set of test cases, compiles the C program
with the ‘gcov‘ option enabled, and executes each test case
to collect coverage data. This process enables us to determine
which sections of the program are being executed by each test
case and, consequently, identifying areas of the program that
may be susceptible to errors.

The Program Spectra Generator is a crucial component in
our proposed system. It receives input from three sources:
test results from the Output Comparator, a statement coverage
report from the GCOV Generator, and a predicate list from the
Predicate Extractor. It then assesses the statements to calculate
the parameter values used in the contingency table [1] to
determine the CMH score [1]. In CHMFL [1], the predicates
could not be assessed correctly as some of them had 100%
coverage. But, according to PRFL [2], conditions are more
susceptible to bugs, and thus, predicates as a whole entity
require a correct evaluation. Thus, we took the list from the

151

Predicate Extractor and valued the whole block (including the
predicate) using the score allotted to the first statement in the
block, reducing complexity and allotting the correct score to
the predicate as well.

The Statement Ranking Generator module takes input from
the Program Spectra and the result of passed and failed test
cases from the Output Comparator. It calculates the suspi-
ciousness score for each statement, using the rules specified in
PRFL, giving higher preference to predicates as referenced in
section. This generates a ranked list of statements from which
a fault can be identified by examining a certain number of
statements.

4. EXPERIMENTAL SETUP

In this section, we provide a detailed account of the experi-
ments conducted and the results obtained.

4.1. Experimental Environment

Our experiments were conducted on a 64-bit Linux system
with 3GB of RAM. The programs in our dataset were im-
plemented in the C programming language. We leveraged
GCOV, a code coverage tool, in conjunction with GCC, for the
analysis of static code coverage in the subject C programs. All
other modules were developed using the Python programming
language.

4.2. Dataset

To showcase the effectiveness of PRCMHFL, we carried out
experiments on a dataset consisting of eleven C programs. The
initial six programs were obtained from the Siemens suite,
while the remaining five programs were sourced from the
NTS repository, which is available for download from the
SIR Repository'. Table II provides comprehensive information
about the C programs. The Siemens suite is widely recognized
as a benchmark for evaluating fault localization techniques.

4.3. Evaluation Metric

In this section, we introduce a valuable metric utilized for
evaluating PRCMHFL. Our study employs the EXAM Score
to assess the quality of PRCMHFL, which is calculated using
Eq. 1.

EXAM _Score = |Sezamincal x 100
|Stotal|

ey

Here, |Sczamined| represents the rank of the statement in the
list, while |Stotq:| indicates the number of lines on which the
test case ran. A lower EXAM score signifies a better technique.
As previously mentioned, a Spectrum-Based Fault Localiza-
tion (SBFL) technique provides a ranked list of statements.
The CMH method is employed as a criterion to calculate the
score for all statements. The CMH? Test, stated in Eq. 2 to

Thttps://sir.csc.ncsu.edu/portal/index.php
Zhttps://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704-
ep713_confounding-em/BS704-EP713_Confounding-EM7.html

TABLE II: Data set characteristics

Programs #Mutants | LOCs | #Exec.Lines | #Tests
PrintTokens 7 565 195 4140
PrintTokens2 10 510 200 4140
Schedule 9 412 152 2650
Schedule2 10 307 128 2710
Tcas 41 173 65 1608
TotInfo 23 406 122 1026
quickSort 6 99 59 128
cfgTest 25 93 46 55
merge2BSTree 8 226 93 197
nextDate 14 204 81 378
Problem1 24 431 298 3906

define whether the hypothesis is accepted or rejected.

Nc o NyfN¢
CMH(s) = 7(N;‘ .]JVV>)

N2(N-1)

However, it is possible for two or more statements to be
assigned the same score. This necessitates the calculation
of two different effectiveness scores for any spectrum-based
fault localization technique: best-case effectiveness and worst-
case effectiveness. The best-case effectiveness occurs when
the faulty statement is examined first among all statements
with identical scores. Conversely, the worst-case effectiveness
occurs when the scores are identical, and the faulty statement
is identified last among the statements.

To evaluate the effectiveness of PRCMHFL, we consider both
of these effectiveness measures.

4.4. Results

To evaluate the accuracy and effectiveness of PRCMHFL,
we conducted a performance comparison with other tech-
niques. We employed the EXAM Score metric to highlight
the strengths and weaknesses of our proposed approach. Since
PRCMHFL represents an advancement in Spectrum-Based
Fault Localization (SBFL) techniques, we compared it with
five well-established techniques: Dstar, Zoltar, Barinel, and
Ample. For additional information about these techniques,
please refer to section 1 of this paper.

The performance of PRCMHFL, as measured by the EXAM
Score metric in Eq. 1, is illustrated in Figures 2 to 6. In
each graph, the horizontal axis represents the percentage
of executable statements examined, while the vertical axis
represents the percentage of detected faulty versions.

A point (x, y) on the graph signifies that y% of faulty versions
are identified after examining code equivalent to x% of the
executable statements in the program. The graphs compare
our technique with an existing technique by showcasing both
the best and worst effectiveness of our technique.
Specifically, PRCMHFL (best) required only 5% of code
examination to localize 79% of faulty versions, while CMHFL
(best) achieved 76%, as shown in Fig. 2. This represents a
significant improvement in the efficiency of our technique.

NTS Test Suite

100 1
80 - il
‘,“
2 !
2 601
4
z
3
£ 404
ES
20 A CMH best
CMH worst
—— PRCMHFL best
0+ —-= PRCMHFL worst
0 20 P 60 80 100
% Statements examined
(@)
SIEMENS Test Suite
100 1 >
7
_____ o
e
80
w
s
w 60
2
z
3
£ 404
ES
20 A CMH best
CMH worst
—— PRCMHFL best
0+ —-= PRCMHFL worst
0 20 P 60 80 100
% Statements examined
(b)
Figure 2: Effectiveness comparison of CMHFL and
PRCMHFL

Furthermore, we observed a substantial improvement in the
worst-case scenario of PRCMHFL compared to CMHFL[1].
PRCMHFL (worst) was able to localize 82.6% of faulty ver-
sions with only 20% of code examination, while CMHFL[1]
(worst) only covered 72.1% of faulty versions. It is also
noteworthy that our technique exhibits a smaller gap between
the worst and best-case scenarios and that our worst-case
scenario outperforms the best-case scenario of CMHFL[1] in
certain cases.

In another comparative study using the NTS test suite, we
found that PRCMHFL also outperformed Dstar and Barinel
in localizing faulty versions. PRCMHFL (best) was able to
localize 80% of faulty versions with only 6.1% examination
of code, while Dstar (best) required 39% of code examination
for the same result. Dstar (worst) accurately localize 63.1% of
faulty versions with 20% of code examination. In comparison,

152

NTS Test Suite

100 1
—
80 7 ——""'
/4
2 f
2 601
4
=
S
£ 404
ES
20 A DSTAR best
DSTAR worst
—— PRCMHFL best
oA —-~ PRCMHFL worst
T T T T T T
0 20 40 60 80 100
% Statements examined
(a)
SIEMENS Test Suite
100 1 7
r
m— 4
.—-—,——"
80
w
s
@ 60+
2
=
S
£ 404
ES
20 A DSTAR best
DSTAR worst
—— PRCMHFL best
oA —-~ PRCMHFL worst
T T T T T T
0 20 40 60 80 100
% Statements examined
(b)

Figure 3: Effectiveness comparison of Dstar and PRCMHFL

Barinel (best) and Barinel (worst) were able to localize 59%
and 44.3% of faulty versions, respectively, while Ample (best)
and Ample (worst) achieved 59% and 44.9%, respectively.
In addition to the NTS test suite, we also conducted ex-
periments using the Siemens suite (as depicted in Fig. 4 to
Fig. 5 SIEMENS test suite graphs). Our results demonstrated
that our technique’s best-case scenario outperformed the best
cases of most existing techniques. Furthermore, due to the
smaller gap between our best and worst-case scenarios, our
technique consistently produced better results than most other
techniques, even when compared to their best cases. This
highlights the robustness and reliability of our technique in
localizing faulty versions.

Overall, our results showcase the improved effectiveness and
efficiency of PRCMHFL in localizing faulty versions com-
pared to other techniques such as CMHFL[1], Dstar[17],
Barinel[6], Zoltar[23] and Ample[21].

NTS Test Suite

100 1
—
80 - —_/
4
2 !
2 601
4
=
S
£ 404
ES
20 A BARINEL best
BARINEL worst
—— PRCMHFL best
oA —-~ PRCMHFL worst
T T T T T T
0 20 40 60 80 100
% Statements examined
(@)
SIEMENS Test Suite
100 1 r
r
T ——— 7
I
80
w
s
@ 60+
2
=
S
£ 404
ES
20 A BARINEL best
BARINEL worst
—— PRCMHFL best
oA —-~ PRCMHFL worst
T T T T T T
0 20 40 60 80 100
% Statements examined
(b)

Figure 4: Effectiveness comparison of Barinel and PRCMHFL

5. COMPARISON WITH RELATED WORK

There are several existing slice-based Fault Localization tech-
niques [9, 15, 24]. These techniques aim to reduce the size of
the program by selecting only those statements that directly
or indirectly affect the value of a variable at a given program
point. They then attempt to localize the most prone target slice.
However, this approach has limitations as it may not provide
a complete view of the program code.

In contrast, our method, PRCMHFL, assigns a suspiciousness
score to each and every executable statement in the program.
This provides a more comprehensive and detailed view of the
program code, allowing for more accurate fault localization.
We discussed about PRCMHFL and other spectrum-based
fault localization techniques previously. Our findings show
that our technique is good as compared to others. Dstar is
a well-known technique in this domain. Our results establish
PRCMHFL as a stronger technique among spectrum-based

153

NTS Test Suite

100 1
—
80 7 ——""'
/8
2 {
2 601
4
=
S
£ 404
ES
20 A ZOLTAR best
ZOLTAR worst
—— PRCMHFL best
0 —-~ PRCMHFL worst
T T T T T T
0 20 40 60 80 100
% Statements examined
(a)
SIEMENS Test Suite
100 1 r
r
—
o
80
w
s
n 60
2
=
S
£ 404
ES
20 A ZOLTAR best
ZOLTAR worst
—— PRCMHFL best
0 —-~ PRCMHFL worst
T T T T T T
0 20 40 60 80 100
% Statements examined
(b)

Figure 5: Effectiveness comparison of Zoltar and PRCMHFL

approaches and befit for standard for fault localization.

Neural Network-based techniques [18, 19, 26, 27, 28, 29, 30]
have the potential to be effective in fault localisation. They
have few drawbacks, including the need for extensive training
time, parameter tuning, and the complexity of weight updates.
On the other hand, our work PRCMHFL is efficient and
effective solution. It requires significantly less time to execute
when compared to Neural Network-based techniques. Also, it
is a more practical and reliable option for Fault Localization.

6. DISCUSSION

We proposed a statistical fault localization technique. This
amalgamates the strengths of two existing methods, PRFL
and CMHFL. Our aim was to enhance the efficiency of fault
localization by reducing the amount of code examination
required. PRFL and CMHFL have established themselves as
valuable techniques in this context, and our approach builds
upon their foundations to achieve even more promising results.

NTS Test Suite

100 1
—
801 .—~—"
4
2 !
2 601
4
=
S
£ 404
ES
20 A AMPLE best
AMPLE worst
—— PRCMHFL best
oA —-~ PRCMHFL worst
T T T T T T
0 20 40 60 80 100
% Statements examined
(@)
SIEMENS Test Suite
100 1 7
7
_____ /
- —
80
w
s
@ 60+
2
=
S
£ 404
ES
20 A AMPLE best
AMPLE worst
—— PRCMHFL best
oA —-~ PRCMHFL worst
T T T T T T
0 20 40 60 80 100
% Statements examined
(b)

Figure 6: Effectiveness comparison of Ample and PRCMHFL

Through extensive experimentation and evaluation, we have
demonstrated the effectiveness of PRCMHFL in compari-
son to various well-established fault localization techniques.
PRCMHFL consistently outperforms most of these methods,
including Dstar, Zoltar, Ochiai, Barinel, and Ample, in terms
of accuracy and efficiency. The ability of PRCMHFL to
achieve high fault localization accuracy with a reduced code
examination percentage sets it apart as a leading technique in
the field.

However, our research does not end here, and there are several
future insights and avenues for further exploration:

1. Enhancing Scalability: While PRCMHFL exhibits impres-
sive performance on the datasets tested, further research can
focus on making it even more scalable to accommodate larger
software projects. This would require optimizing the algorithm
to handle extensive codebases efficiently.

2. Integration with Machine Learning: Considering the suc-

154

cess of machine learning-based fault localization techniques,
future work may involve integrating machine learning models
into PRCMHFL to harness the power of predictive algorithms
for even better results.

3. Real-world Applications: Expanding the evaluation to real-
world software projects and scenarios would provide valuable
insights into the practicality and adaptability of PRCMHFL in
industrial settings.

4. User-Friendly Tools: Developing user-friendly tools and in-
terfaces that implement PRCMHFL can facilitate its adoption
by developers and testing teams, making it a more accessible
and valuable asset in the software development process.

7. CONCLUSION

In conclusion, PRCMHFL represents a significant advance-
ment in the domain of fault localization. Its ability to ac-
curately pinpoint faults with reduced code examination and
its potential for further improvements make it a promising
choice for software developers seeking efficient and effective
debugging solutions. As we continue to explore and refine this
technique, we envision it playing a pivotal role in enhancing
software quality and reliability in the future.

REFERENCES

[1] Dharanappagoudar, R., Gupta, P., & Godboley, S. (2022,
November). CMHFL: A new Fault Localization tech-
nique based on Cochran—-Mantel-Haenszel method. In
2022 IEEE 19th India Council International Conference
(INDICON) (pp. 1-7). IEEE.

Godboley, S., & Dutta, A. (2021, December). PRFL:
Predicate Rank based Fault Localization. In 2021 IEEE
18th India Council International Conference (INDICON)
(pp- 1-6). IEEE.

Godboley, S., Dutta, A., Mohapatra, D. P, Das, A.,
& Mall, R. (2016). Making a concolic tester achieve
increased MC/DC. Innovations in systems and software
engineering, 12(4), 319-332.

Dutta, A., Srivastava, S. S., Godboley, S., & Mohapatra,
D. P. (2021). Combi-FL: Neural network and SBFL based
fault localization using mutation analysis. Journal of Com-
puter Languages, 66, 101064.

Rani, G. M., & Godboley, S. (2022, April). Poster: A gCov
based new profiler, gMCov, for MC/DC and SC-MCC. In
2022 IEEE Conference on Software Testing, Verification
and Validation (ICST) (pp. 469-472). IEEE.

Abreu, R., Zoeteweij, P., & Van Gemund, A. J. (2009,
November). Spectrum-based multiple fault localization. In
2009 IEEE/ACM International Conference on Automated
Software Engineering (pp. 88-99). IEEE.

Agrawal, H., De Millo, R. A., & Spafford, E. H. (1991).
An execution-backtracking approach to debugging. IEEE
Software, 8(3), 21-26.

Burnim, J., & Sen, K. (2008, September). Heuristics for
scalable dynamic test generation. In 2008 23rd IEEE/ACM
International Conference on Automated Software Engi-
neering (pp. 443-446). IEEE.

(2]

(3]

(5]

(6]

(7]

155

[9] Campos, J., Riboira, A., Perez, A., & Abreu, R. (2012,
September). Gzoltar: an eclipse plug-in for testing and
debugging. In Proceedings of the 27th IEEE/ACM interna-
tional conference on automated software engineering (pp.
378-381).

[10] Choi, S. S., Cha, S. H., & Tappert, C. C. (2010). A
survey of binary similarity and distance measures. Journal
of systemics, cybernetics and informatics, 8(1), 43-48.

[11] Cleve, H., & Zeller, A. (2005, May). Locating causes of
program failures. In Proceedings of the 27th international
conference on Software engineering (pp. 342-351).

[12] Goodman, L. A., & Clogg, C. C. (1984). The analysis
of cross-classified data having ordered categories. Harvard
University Press.

[13] Jonmes, J. A., & Harrold, M. J. (2005, November). Empiri-
cal evaluation of the tarantula automatic fault-localization
technique. In Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineering
(pp- 273-282).

[14] Jomes, J. A., Harrold, M. J., & Stasko, J. (2002, May).
Visualization of test information to assist fault localization.
In Proceedings of the 24th international conference on
Software engineering (pp. 467-477).

[15] Naish, L., Lee, H. J., & Ramamohanarao, K. (2011).
A model for spectra-based software diagnosis. ACM
Transactions on software engineering and methodology
(TOSEM), 20(3), 1-32.

[16] Renieres, M., & Reiss, S. P. (2003, October). Fault
localization with nearest neighbor queries. In 18th IEEE
International Conference on Automated Software Engi-
neering, 2003. Proceedings. (pp. 30-39). IEEE.

[17] Wong, W. E., Debroy, V., Gao, R., & Li, Y. (2013).
The DStar method for effective software fault localization.
IEEE Transactions on Reliability, 63(1), 290-308.

[18] Wong, W. E., Debroy, V., Golden, R., Xu, X., & Thu-
raisingham, B. (2011). Effective software fault localization
using an RBF neural network. IEEE Transactions on
Reliability, 61(1), 149-169.

[19] Wong, W. E., & Qi, Y. (2009). BP neural network-based
effective fault localization. International Journal of Soft-
ware Engineering and Knowledge Engineering, 19(04),
573-597.

[20] Xuan, J., & Monperrus, M. (2014, September). Learning
to combine multiple ranking metrics for fault localization.
In 2014 IEEE International Conference on Software Main-
tenance and Evolution (pp. 191-200) IEEE.

[21] V. Dallmeier, C. Lindig and A. Zeller, "Lightweight
bug localization with ample", Proceedings of the sixth
international symposium on Automated analysis-driven
debugging, pp. 99-104, 2005.

[22] R. Abreu, P. Zoeteweij and A. J. Van Gemund,
"On the accuracy of spectrum-based fault localization",
Testing: Academic and Industrial Conference Practice
and Research Techniques-MUTATION 2007. TAICPART-
MUTATION 2007, pp. 89-98, 2007.

[23] T. Janssen, R. Abreu and A. J. C. van Gemund,

"Zoltar: A Toolset for Automatic Fault Localization,"
2009 IEEE/ACM International Conference on Automated
Software Engineering, Auckland, New Zealand, 2009, pp.
662-664, doi: 10.1109/ASE.2009.27.

[24] Eric Wong, Tingting Wei, Yu Qi and Lei Zhao, "A
crosstab-based statistical method for effective fault local-
ization", 2008 1st international conference on software
testing verification and validation, pp. 42-51, 2008.

[25] Jiang, J., Wang, R., Xiong, Y., Chen, X., & Zhang,
L. (2019, November). Combining spectrum-based fault
localization and statistical debugging: An empirical study.
In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE) (pp. 502-514).
IEEE.

[26] Zhang, Z., Lei, Y., Tan, Q., Mao, X., Zeng, P, &
Chang, X. (2017). Deep learning-based fault localization
with contextual information. IEICE TRANSACTIONS on
Information and Systems, 100(12), 3027-3031.

[27] Tan, P. N., Steinbach, M., & Kumar, V. (2016). Introduc-
tion to data mining. Pearson Education India.

[28] W. Eric Wong, Yu Qi, BP neural network-based effective
fault localization, Int. J. Softw. Eng. Knowl. Eng. 19 (04)
(2009) 573-597.

[29] Zheng, W., Hu, D., & Wang, J. (2016). Fault localization
analysis based on deep neural network. Mathematical
Problems in Engineering, 2016.

[30] Dutta, A., Manral, R., Mitra, P., & Mall, R. (2019).
Hierarchically localizing software faults using DNN. IEEE
Transactions on Reliability, 69(4), 1267-1292.

[31] Hong, S., Lee, B., Kwak, T., Jeon, Y., Ko, B., Kim, Y.,
& Kim, M. (2015, November). Mutation-based fault local-
ization for real-world multilingual programs (T). In 2015
30th IEEE/ACM International Conference on Automated
Software Engineering (ASE) (pp. 464-475). IEEE.

[32] Weiser, M. (1984). Program slicing. IEEE Transactions
on software engineering, (4), 352-357.

[33] Lyle, R. (1987). Automatic program bug location by pro-
gram slicing. In Proceedings 2nd international conference
on computers and applications (pp. 877-883).

[34] Korel, B., & Laski, J. (1988). Dynamic program slicing.
Information processing letters, 29(3), 155-163.

[35] P. K. Singh, S. Garg, M. Kaur, M. S. Bajwa and Y.
Kumar, "Fault localization in software testing using soft
computing approaches,” 2017 4th International Confer-
ence on Signal Processing, Computing and Control (IS-
PCC), Solan, India, 2017, pp. 627-631, doi: 10.1109/IS-
PCC.2017.8269753.

[36] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker
Hussien Ahmed, Rasheed Abubakar Rasheed, Multi-
ple fault localization of software programs: A system-
atic literature review, Information and Software Tech-
nology, Volume 124, 2020, 106312, ISSN 0950-5849,
https://doi.org/10.1016/j.infsof.2020.106312.

[37] Aranega, Vincent, Jean-Marie Mottu, Anne Etien, and
Jean-Luc Dekeyser. "Traceability Mechanism for Error
Localization in Model Transformation." In ICSOFT (1),

156

pp. 66-73. 2009.

[38] Y. Li, S. Wang and T. Nguyen, "Fault Localization
with Code Coverage Representation Learning,” 2021
IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), Madrid, ES, 2021, pp. 661-673, doi:
10.1109/ICSE43902.2021.00067.

[39] GCC, "GNU gcov a Test Coverage Program."
https://gcc.gnu.org/onlinedocs/gec/Geov.html. Accessed
October 5, 2023.

[40] Godboley, S., Mohapatra, D.P. (2022). Towards Agile
Mutation Testing Using Branch Coverage Based Pri-
oritization Technique. In: Przybytek, A., Jarzgbowicz,
A., Lukovi¢, 1., Ng, Y.Y. (eds) Lean and Agile Soft-
ware Development. LASD 2022. Lecture Notes in Busi-
ness Information Processing, vol 438. Springer, Cham.
https://doi.org/10.1007/978-3-030-94238-0_9

[41] Agarwal, S., Godboley, S., Krishna, P.R. (2022). Cy-
clomatic Complexity Analysis for Smart Contract Using
Control Flow Graph. In: Panda, S.K., Rout, R.R., Sadam,
R.C., Rayanoothala, B.V.S., Li, KC., Buyya, R. (eds)
Computing, Communication and Learning. CoCoLe 2022.
Communications in Computer and Information Science,
vol 1729. Springer, Cham. https://doi.org/10.1007/978-3-
031-21750-0_6

[42] Godboley S. and Krishna P. (2023). SmartMuVerf: A
Mutant Verifier for Smart Contracts. In Proceedings of
the 18th International Conference on Evaluation of Novel
Approaches to Software Engineering - Volume 1: ENASE,
ISBN 978-989-758-647-7, SciTePress, pages 346-353.
DOI: 10.52200011822200003464

[43] Monika Rani Golla and Sangharatna Godboley. 2023.
GMutant: A gCov based Mutation Testing Analyser. In
Proceedings of the 16th Innovations in Software Engi-
neering Conference (ISEC ’23). Association for Comput-
ing Machinery, New York, NY, USA, Article 22, 1-5.
https://doi.org/10.1145/3578527.3578546

