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Abstract—Attack surface is the set of code and data that can be
changed, stolen, or exploited by the user of the system. Attack
surface of the complex systems may consist of functions on
different programming languages and data files within web
servers, Python/JS backends, databases, firewalls, and other
services.

Having the attack surface description, one can remove un-
needed dependencies of the scripts, modules, and programs,
or improve testing (e.g., make more fuzzing), as it is needed
for security development lifecycle (SDL). Attack surface de-
scription may also be required in the process of software
certification.

In this paper we focus on finding program code that processes
the input data and therefore can be treated as an attack surface.
This analysis is performed in the virtual machine (VM), and
application properties can be extracted using VM introspec-
tion. Existing introspection methods can be applied only to
binary code, and not for scripts. When script interpreter runs
a program, this script, and its functions should also be treated
as an attack surface.

Runtime architecture of the system, i.e., loaded binary mod-
ules, executed scripts, open web sockets, accessed files, appli-
cation interactions, and so on, also may be used for analysis
of the attack surface.

Therefore the aim of this paper is extending introspection
and VM analysis methods for recovering the attack surface
of the complex system, executed in the virtual machines. Our
contribution is the following: new method for recovering the
runtime architecture of the system, new approach for finding
executables in the virtual machine memory, and new hybrid
introspection method for analyzing the execution of interacting
compiled and interpreted programs. We implemented these
new approaches for QEMU emulator running Linux-based
OSes with CPython interpreters, as they widely used for
creating complex multi-component systems.

Keywords—emulation, attack surface, dynamic analysis, soft-
ware certification, taint analysis, virtual machine introspection

1. INTRODUCTION

Attack surface of the system consists of possible entry points,
that can be used to breach into it. Attack surface of the single
application usually divided into the following parts [3]:

« ways of communication with the program

o program code that controls the communication
o valuable data used in the application

o program code for protecting the valuable data
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Detection of the attack surface is the significant part of the
security development lifecycle (SDL), software testing, or
software certification, because program code from the attack
surface has higher requirements for reliability, security, and so
on.

In this paper we focus on finding program code that can be
treated as attack surface, due to processing of the input data.
This code includes concrete functions, that get the data buffers
directly, and the binary modules and applications, that could
recieve the copy of the input through documented or unwanted
channel.

A complex software information system usually includes many
components: web server, web application with backend and
frontend, database, firewall. Each of these components may
be considered as a part of attack surface: network packets are
processed by web server, then passed to web application, and
finally written to database. Any of such software components
(program modules) of the systems may be exploited by an
attacker. For example, bug in Log4j library affected thousands
of servers [8].

Small web application, which code can fit to one screen,
deployed in the new environment, automatically grows up into
a complex system with many interfaces [1], [12].

Attack surface could be made as small as possible to reduce
the number of components that require attention [26]This
approach is called “application debloating” and uses static and
dynamic analysis to find the useless components.

But even when the system was “debloated”, some of the useful
modules can receive user-generated or sensitive data though
direct function calls or side channels [5].

Existing approaches and tools focus only on separate com-
ponents of information systems, but none of them examine
system as a whole. Methods for finding the components,
modules, and functions (i.e., the attack surface), that are
activated in realistic scenarios, are not explored enough, and
applied to the separate applications only. “Real world” full-
system testing scenarios can reveal side channels of data
transfer and allow finding more components of the attack
surface, that can be debloated, analyzed, or isolated.

The real attack surface may include applications on scripting
languages. Commonly used analysis methods can only map the
executed binary code to the executables, using virtual machine
introspection methods [9], [15], [18]. This code can be mapped
to the source, using DWARF debug information, making the
analysis convenient. But the script interpreters are different,
they adds new runtime abstraction layer to the execution. The
same binary code processes different “real” code parts from
the script. Therefore it requires additional introspection layer



to make available the information about the script functions
being executed.

As we are trying to make the attack surface as full as possible,
we started with the following research questions:

e Can we find which functions are executed in the VM?
Finding the functions is not as simple, as instrumenting the
executed instructions, because mappings of the executables
is not known, and there could be many versions of the same
program in the system.

e Can we introspect Python interpreter, executed within the
VM? We are targeting full-system analysis to allow re-
constructing the attack surface for the virtual machines.
But there are no existing approaches, that can extract the
behavior of the interpreted Python program from the virtual
machine.

o Is full-system taint analysis useful for analysis of the Python
programs? We already used taint analysis to find the attack
surface of the compiled programs [16]. Python applications
can also be a part of the attack surface. But taint propagation
works on the CPU instruction level, therefore we have to
figure out how to fill this semantic gap.

The contribution, presented in the paper, is the following:

o Hybrid introspection method. This is a new introspection
method for analysis of the systems that include interacting
binary executables and scripts. It allows recovering the
functions of the executed script code.

o Method for recovering the runtime architecture of the sys-
tem. We used taint analysis and hybrid introspection to
find the data dependencies between applications. It also
allows finding the attack surface, which includes binaries
and Python scripts.

o Method for detecting executed files in memory. It helps
in finding the executed functions and distinct the similar
executables, that have the same name, e.g., running in
different containers.

o Case study of recovering the attack surface for simple web
application, which processes the file, uploaded by the user.
Our example demonstrate the usefullness of the presented
approach — we can find the functions and modules that
should be fuzzed (or debloated, or anything else), because
they take part in processing the data, coming from the user.

2. RELATED WORK

There are no public tools for finding the full stack system-
wide attack surface. Even system architecture and data flows
are usually recovered manually by the experts [13], [30].

2.1 Data Flow Analysis

Data flow tracking, or taint analysis, allows examining the
flows of sensitive data in the system [21]. It may be used to
detect data leakage, malicious code, and other unauthorized
behavior.

Taint analysis was already used for taint tracking in the virtual
machines [6], [9], [18] or even in the real machine, using the
hardware co-processor [29]. Full system taint analysis allows
tracking how data is processed inside the OS kernel, and

tracking the data flow between the applications. Taint analysis
itself may be used for different purposes, but these tools do
not try using it for recovering the runtime architecture of the
system. Such full-system taint analysis tools are targeted to
detection of tainted code execution and analysis of the web
applications.

2.2 Analysis of the Virtual Machines

There are debuggers that allows requesting information about
the state of the virtual machine and events inside. One of such
tools is PyREBox [22]. This QEMU-based debugger retrieves
the list of running applications, modules, and functions. How-
ever, this information may be obtained only in the process
of the interactive debugging and can’t be used for automatic
system architecture recovering.

Cuckoo Sandbox [7] is the open source automated mal-
ware analysis system. It is targeted to make different tracing
jobs, like API or network tracing of a single application. Its
capabilities for observing the runtime behavior of the complex
systems are limited to file or network logging and memory
dump analysis.

Katana is a tool for analysis of the virtual machine memory
snapshots [15]. In contrast with Panda [9], Rekall [25],
and other tools, it does not require a pre-defined OS profile
to extract the information about the executed applications.
However, it is targeted to forensics, when only one memory
snapshot is available, and lacks the dynamic analysis and other
applications, when benign software is under the attention.

2.3 Dealing with Attack Surface

Software debloating is the process of removing the unused
features. Thus it decreases the program size and makes attack
surface smaller [19], [23]. Papers that describe software de-
bloating intended to be used with separate applications and
can’t be applied for complex systems that consist of many
services that interact through files, pipes, and shared memory.
Attack surface should get an additional attention while testing
the system. Dynamic testing of web application interfaces in-
cludes scanning the API, crawling with browser, and scanning
the dependencies [12]. It can be used to identify unwanted
interfaces, or verify the correctness of the API. But it can’t
look deeper and find the binaries, and their possible flaws, that
process the data, coming through the API.

Another application of the attack surface is fuzzing the func-
tions that were found. There are many tools for fuzzing the
compiled applications [14], [27], [28] and Python scripts [2].
Fuzzers are rarely applied to the full application, due to the
complexity of the control flow. Usually they test only one
branch of the call graph, starting from the selected function.
Therefore knowing the attack surface is the key to successful
fuzzing.

3. OVERALL NATCH STRUCTURE

Natch is a set of tools, that implement the approaches created
during this research. It uses full-system dynamic analysis,
because complex systems that consist of multiple applications.
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that may be executed within containers, can’t be analyzed
with application-level instrumentation tools. We used QEMU
full-system emulator for implementation of the attack surface
analysis system. QEMU employs dynamic translation and
allows creation of instrumentation layer upon the executed
code.

Natch, our attack surface detection system, performs the
following actions to recover the runtime system architecture
and find the attack surface:

o Collect the information about executed processes.

o Monitor the network connections and file operations.

o Get addresses for loaded executable modules.

o Trace executed scripts.

o Analyze data flows from the tainted inputs.

o Visualize the analysis result and generate reports.

4. VM INTROSPECTION

Virtual machine introspection is used for obtaining infor-
mation about the executables and runtime events inside the
system [17]. There are several approaches to implementing
introspection. We use non-intrusive approach to the introspec-
tion [11], which does not execute instrumentation code within
the guest system, because it is compatible with VM execution
replay.

To reconstruct the attack surface we need to recover the

following information:

o Processes and their command line arguments. Program itself
may be a part of an attack surface. Knowing which programs
are executed is the first step for system debloating or
thoroughly testing.

« Executables and their memory mappings. When full-system
emulator executes the code, it deals with machine instruc-
tions. There is no information about the executable modules.
To find the attack surface we have to recover executables
and map executed instructions to the named functions in the
binaries.

o File information. Some of the executables are not in the
scope of analysis, but user may need to know their paths.
File access logging is useful too, because this could be the
part of the attack surface.

o Socket information. Network connection is usually the part
of the attack surface. Knowing all information about open
sockets helps in improving the application security.

Introspection approach described in [11] is not powerful
enough for collecting all the information about processes,
tasks, files, and memory mappings. Therefore we extended
it by creating the parser of the internal kernel data structures.
Similar approach with parsing the kernel data structures was
already implemented in [9]. This is achieved by collecting
some addresses of the kernel data structures and offsets of
their fields. The set of such values is called “kernel profile”,
because it depends only on kernel build: source code version
and compilation parameters.

We introspect the kernel data structures to build the

application-level view on the virtual machine. The following

Linux data structures were tracked:

e task_struct fields to get information about tasks and
processes, their relations, command lines, and runtime
states.

e files_struct fields for recovering the file properties
when we inspect file-related system calls.

e cred structure fields to get the process user ids and
capabilities.

e mm_struct and vin_area_struct are used for building
process memory map and finding the executable names
loaded.

e socket structure fields for retrieving the assigned ad-
dresses and other data from open sockets.

All these structures are monitored during VM state change
events, that can be coupled with change of the application
parameters. E.g., when CPU returns from kernel mode to
user mode, it means that the previously active process could
exit or can be destroyed, therefore we should check the
task_struct->state field.

Our implementation of the introspection do not require running
guest instrumentation code, making it compatible with deter-
ministic execution replay. Deterministic replay allows one to
record system execution and then to reproduce it over and
over as many times as it is needed [10]. As the analysis may
slowdown the emulator for the several times, the deterministic
replay is especially important to mitigate the impact of this
slowdown on the guest system behavior.

With all collected system information we can build runtime
state of the process tree, list of open files, and so on. But even
when we know the name of the executables, we can’t be sure,
that these are the executables of our interest. Therefore we
need a method for finding the executables’ mappings.

4.1 Finding Executables in the VM Memory

Virtual machine execution consists of continuous switching
between the kernel code and application code. Therefore user
can observe (through logging or debugging) the flow of the
machine instructions and can’t assign those instructions to the
processes or executable files.

Using VM introspection from the previous section, we can
distinguish the executed instructions between the processes.
But in the most cases each process includes many executables:
program itself and shared libraries. Allocation of the exe-
cutable memory areas can’t be determined statically, because
the loader may assign any addresses for the binaries (and this
is the preferred mode, ASLR, needed to mitigate the attacks).
We used kernel file structures and description of the memory
areas to distinguish the executed modules. But this approach
gives only file names, assigned to memory areas. This does
not help in finding the functions that was actually called,
because executable section offset within the memory area may
be unknown. And logging the functions in runtime is required
to collect the attack surface reports. This method also does not
help in detecting the loaded kernel objects, because process
memory mappings do not include kernel information.
Mapping of the obtained executable path to the binary (and its
symbols) is not easy to implement for the following reasons:



« Different containers within the virtual machine can include
different builds of the same program.

o Guest disk image should be unpacked to verify the paths.
This is an additional time-consuming operation, which does
not completely solves the problem, due to the following.

« Files may be extracted or copied at runtime, therefore their
paths will not exist in the unpacked image.

o Correct code sections offsets still have to be determined
somehow, due to ASLR. Section offsets are needed for
finding the functions, that were executed in the VM.

That is why we invented a new method, which determines the
mapping of the analyzed binaries to the guest memory. The
executables and the VM memory have the common unchanged
part: executable code. We compare bytes, that can be extracted
from the mapped pages in the VM, with the bytes extracted
from the analyzed files. Let F be the number of executables, S
— their size in bytes, and P — size of a single code page. Our
mapping method should comply the following requirements
and limitations:

o Time complexity of the code page processing should be
O(P) in average. There should be no additional delay
related to large number of executables or their code section
size. This requirement can only be satisfied with state
machine or hash table.

« Method should be capable of detecting large 4 Gb executa-
bles and and small 16 kb kernel objects.

« Sample executables can be pre-processed, but their set could
be changed (e.g. adding one new executable) without any
significant re-hashing efforts.

The fastest possible search can be implemented with the state
machine (or trie) which uses the contents of the executable
code pages as input bytes. Every byte moves trie pointer
(or state of the machine) forward, until getting the prefix,
which matches only one executable. However, this method has
several drawbacks:

o Code pages are not static. Some of the bytes are assigned
by the loader, and their values depend on executable base
address. These bytes are called “relocations”.

« State machine for the analyzed set of the executables can’t
be cached, because new executables may be added (or some
may be removed). And rebuilding the state machine would
be O(9).

« Fastest machine with shortest prefixes will make many false
positive errors. E.g., if there is a code with first byte 0x42
in a single executable, all pages starting with this byte will
be recognized as belonging to this file. Even when there are
other guest files, that were not used for matching.

The first drawback does not allow treating the code sections
as a long sequence of bytes. If we just skip the relocations, we
get many chunks of code bytes, but every chunk has its own
offset. Therefore executable matching complexity may reach
O(P - E).

To decrease the complexity, we decided to split the executable
code sections into samples of the same length L and offsets
aligned to L. All samples with relocations inside were just

dropped.

I begin of section
OOOmO000 sample with relocation
OOOO00O08  vatid sample
(0] I end of section

Figure 1: . text page loaded into code page and divided into
several samples.

With this simplification, we can calculate hash values for all
samples in O(S) time during preparation stage. On execution
phase, we just load all hashes into the hash table in O(S/L)
time (which is much better than O(.S) recalculation).

But how big (or small) should be the sample size L? To
figure it out, we took the /usr directory in Ubuntu 20.04 and
scanned all executables inside. There were 9476 executables
and dynamic libraries. For L = 64 there were 48966228
samples with unique hash (88% of total). For L = 128 there
were 24476712 samples with unique hash (94% of total). For
L = 256 there were 12224197 samples with unique hash (96%
of total).

Collision level should be as low as possible, but all these levels
are normal, because these are collisions between the samples.
But every code page usually has several valid samples. And if
first one is not unique, the second one will probably identify
the executable.

We wanted sample size to be as small as possible to allow
working with dynamically loaded kernel objects, that have tiny
code sections. Therefore we have chosen L = 128, which has
low enough collision level. Usually the number of analyzed
executables is below 100, therefore there are no collisions at
all.

Our new executable module detection method can be used for
commodity executables, for large files (like Linux kernel), and
for small files (like kernel objects). It was successfully applied
to locate the executed functions in the running VM.

4.2 Debug Info and Executed functions

When all executables are mapped, we can inspect their code as
it is executed. Attack surface, that we recover, should include
the list of the functions, that processed the input data, and the
context of their invocations, i.e. backtrace.

One of the approaches for creating the backtrace is instru-
menting the call and ret instructions within the virtual
machine. But in some cases it is not enough. Consider the
example from [24] (Figure 2).

Executable loader puts the addresses of the dynamic library
functions into global offsets table (GOT). When the program
needs to invoke such functions, call instruction proceeds to
the entry in .plt section. That entry loads actual function
address from GOT and jumps to that address.

Call instruction goes to puts@plt function in test exe-
cutable, therefore we’ll have this function in the call graph
instead of desired reference to libc.so. To solve this
problem, we read debug information for loaded libraries, and
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0334
0334:
033a:

<.plt>:
ff b3 04 00 00 00 pushl 0x4 (%ebx)
ff a3 08 00 00 00 jmp *0x8 (%ebx)

0354 <puts@plt>:
; indirect jump to address from GOT

0354: f£ff a3 10 00 00 00 Jmp *0x10 (%ebx)
035a: 68 08 00 00 00 push $0x8
035f: €9 do ff ff ff Jmp 334 <.plt>

043c <test>:

; load GOT address into ebx

0448: 81 c3 ac 1b 00 00 add $0xlbac, %ebx

; call to trampoline in .plt

0465: e8 ea fe ff ff call 354 <puts@plt>

1ff4 <.got.plt>:
2004: 00 00 5a 03

Figure 2: Trampolines in . plt section for calling the dynamic
library functions.

instrument entry points of all functions. When control flow
reaches one of these addresses, we switch the call graph entry
to the new name.

This method also allows dealing with tail function calls, when
call instruction is replaced with jmp by the compiler. Such
optimization does not allow detecting the correct (source-
level) call graph, but our instrumentation of the function entry
points at least allows us not to miss the executed function at
all (Figure 3). Therefore our instrumentation allows creating
the attack surface, which includes the correct function names
in all similar cases.

5. HYBRID INTROSPECTION

When we explore the attack surface of the application, we can
find which functions process used-supplied data and recover
the call chain for them to find out the components that affected
by the called functions. But when the application includes
interpreted code, we can only see some interpreter-related
functions (Figure 4), but not the information about the user
code, which is written on JavaScript, Python, or PHP [4], [20].
When such kind of system is analyzed, the user expects to get
list of the script functions, not the functions of the interpreter.
We started with Python, because it is widely used as a language
for creating the web application backends. Python virtual
machine interprets the script code, saving references to the
source files, because they can be used for debugging.

To recover the information about the executed Python func-
tions and program modules, we created new non-intrusive
method for introspection of the Python interpreter, running
inside the virtual machine.

First, we extract debug information from compiled Python
interpreter (or download this information when interpreter

is taken from system packages). This information includes
function names and addresses, type and variable description.
With function names we can reconstruct the stack as on
Figure 4. Some of these functions process the source code
function calls. We found in CPython code all the functions that
are used to process script function calls. In most cases these
functions take PyObject pointer as a parameter. This is a
base object type and it includes a pointer to PyTypeObject,
which describes the real type of the object.

We analyzed all embedded types and built an introspection
code to extract names and source references from any of
them. Using this information, we can produce backtraces, that
include the executed functions of the Python scripts (Figure 5).
With our new hybrid introspection, we can either annotate
the calls of the C functions with Python names, or build
separate call graph with Python functions only. This method
also helps in determining what dynamic libraries are invoked
within the script, or how interpreted code processes the input
data, received from other services running within the system.

6. TAINT ANALYSIS FOR ATTACK SURFACE DETECTION

Attack surface includes the entities that can process user’s
data. VM introspection can identify the processes that work
in the system, executables that were loaded, resources that
were acquired by that processes. New hybrid introspection
method can also look into scripts and trace the interpreted
functions. But without any data flow tracking we can’t find
out the executables and functions that were actually used in
data processing (and not just run in parallel).

Therefore identifying the attack surface for the system includes
the following steps:

« Taint sensitive source data.

o Propagate the taints as the data have been processed.

« With VM introspections identify the processes, that receive
tainted data.

« With mapped executables detection, find out the functions,
that process tainted data.

o Find call chains that lead to tainted data processing.

o With hybrid introspection recover the list of Python scripts
and functions, that also get the process the tainted data.

6.1 Taint Tracking

Prior applications of taint analysis to virtual machines were
targeted to detecting buffer overflow-like vulnerabilites [18].
When vulnerability is found, that code is definitely the part
of an attack surface. There also could be other parts, that can
be attacked, but exploits for them are not found yet. Finding
such parts for thorough testing with fuzzing is the aim for our
taint analysis applicaton [16].

Finding the attack surface is getting the list of the functions,
dynamic libraries, and executables, that process the input data.
In Natch sensitive data can be read from selected TCP/UDP
port, or specific file within the VM. The concrete source can
be selected through the configuration file.

Target application do not access tainted buffer directly. And
values from that buffer may be passed to other applications,
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int functionl (int d) functionl:

{ lea edi, [rdi+rdix4] functionl:

int x = d % 10; add edi, edi lea edi, [rdi+rdix4]

return function2 (x); call function? add edi, edi
} ret Jjmp function2

(a) C code (b) Non-optimized code (c) Optimized code
Caller

Caller functionl

functionl Caller function?

function2 functionl

(f) Call graph with entry point instrumen-
(d) Source-level view at call graph (e) Call graph with call instrumentation tation

Figure 3: Tail call optimization adds an obstacle for building call graph. Entry point instrumentation allows not to miss executed
functions, while finding the attack surface.

PyFunction_Vectorcall (Objects/call.c:334)
_PyEval_EvalFrameDefault (Python/ceval.c:1578)
_PyObject_MakeTpCall (Objects/call.c:174)
slot_tp_call (Objects/typeobject.c:7482)
_PyObject_Call_Prepend (Objects/call.c:407)
_PyObject_FastCallDictTstate (Objects/call.c:121)
_PyEval_EvalFrameDefault (Python/ceval.c:1578)
_PyObject_MakeTpCall (Objects/call.c:174)
slot_tp_call (Objects/typeobject.c:7482)
_PyObject_Call_Prepend (Objects/call.c:407)
_PyObject_FastCallDictTstate (Objects/call.c:121)
_PyEval_EvalFrameDefault (Python/ceval.c:1578)
_PyFunction_Vectorcall (Objects/call.c:334)

Figure 4: Backtrace example for the Python interpreter.

MiddlewareMixin.__call__ (django/utils/deprecation.py:90)
SessionMiddleware.process_request (django/contrib/sessions/middleware.py:18)
cached_property.__get__ (django/utils/functional.py:72)
WSGIRequest.COOKIES (django/core/handlers/wsgi.py:116)
get_str_from _wsgi (django/core/handlers/wsgi.py:207)
get_bytes_from_wsgi (django/core/handlers/wsgi.py:194)
encode
decode
parse_cookie (django/http/cookie.py:10)
split
strip

Figure 5: Call graph example for the Python functions. Functions embedded into the Python interpreter do not have reference
to the source code.
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which should be also considered as a part of an attack surface.
Therefore we should propagate the taints as the memory cells
are copied. Full system taint analysis does not need to identify
the interfaces used to pass the data, because all these interfaces
are implemented as some sequence of CPU instructions, that
process the data.

6.2 Process and Function Identification

With taint propagation we can find the instructions of any of
the processes, that access the tainted data. To make it useful
for attack surface detection, we taint only copy operations
destination, when source value is tainted, and not taint the
result of arithmetic and logic operations. The rationale for this
behavior is the following: if the attacker wants to construct an
exploit, this exploit will probably consist of some unchanged
buffer from the input. And when the input is modified, the
exploit is not so easy to construct.

Therefore, highest priority for testing and debloating, should
receive the code, that gets the unchanged values from the input.
VM introspection allows us to identify currently executed
process, by reading current task_struct pointer from the
kernel. When virtual CPU reads or writes tainted data, we
can check the current process, and include it into the attack
surface.

But process name, extracted from task_struct is ambigu-
ous, many different applications or versions may have the same
name. That is why we implemented the executable detection
subsystem. It uses the new method, which can handle large
and small executables. Executable modules, extracted from
the kernel, or detected with our new method, are the first
subject for testing or debloating. But we also want to inspect
the system behavior deeper.

After detecting the executable mappings, we can find out
the executed functions. With the mappings of the executed
functions, we can include them into the attack surface, when
they access the tainted data. But information about direct taint
accessors is not always useful enough.Tainted data in many
cases are accessed with memcpy or similar functions, that
called from higher-level wrappers.

That is why the our main report for attack surface analysis
is call graph. With that graph, one can inspect the function
call chain, which leads to tainted data usage, and select the
functions to be tested with fuzzing.

6.3 Tainted Python Functions Identification

The compiled function is identified as tainted, when it accesses
the tainted data. But scripted functions do not make memory
accesses directly. These functions consist of interpreted opera-
tors, that executed with the help of the interpreter’s functions.
This is similar to the case, illustrated by Figure ?? in the
previous section. As the Python function execution needs an
access to the tainted data, which is performed by some helpers,
this function should be considered tainted.

We highlight such functions in the call graph, therefore user
can choose them or select one of their callers for the fuzzing.
Let’s look at hmac_new function at Figure 6. This is an
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embedded function in module _hashlib. This function is
located in _hashopenssl.c CPython source file. This
function constructs new object and calculates the hash of the
input key, using openssl library.

HMAC._ init_  (hmac.py:38)
HMAC._init_hmac (hmac.py:66)
hmac_new

Figure 6: Backtrace fragment for hmac_new function call.

We consider hmac_new as tainted, because from the Python
point of view, it reads the value of the key argument. This is
done indirectly, but such tainting decision is consistent with
function’s header (Figure 7).

_hashlib.hmac_new

key: Py_buffer
msg as msg_obj:

object (c_default="NULL") = b’’
digestmod:

object (c_default="NULL") = None

Return a new hmac object.

Figure 7: hmac_new description from the CPython standard
library.

Therefore hybrid introspection allows us generating the attach
surface report, which includes processes, modules, functions,
and Python functions, that process the sensitive data.

7. RUNTIME ARCHITECTURE RECOVERING

Using the information about the tainted data propagation
and the executed processes, modules, functions, Natch builds
several kinds of reports.

The first one, is the report with process tree, which is similar
to the output of ps ——forest -ax (Figure 8). It includes
all processes, that were activated within the analyzed run, and
their parents.

The second one, which reveals the overall sensitive data
processing stack, is the report with data flow between the
processes (Figure 9). Data flows are shown with arrows.
Processes, sockets, and files presented as nodes of that graph.
Red-colored processes have root privileges.

Third report discovers the sensitive data flow between all
executable modules, including kernel, dynamic libraries, ap-
plications (Figure 10). It also shows files and network sockets
as tainted data input and output. These recovered modules
should be the first target for fuzzing and debloating, because
they interfere (directly or not) with user’s data.

The last two reports show call graph for the functions in binary
code (Figure 4), and for Python functions (Figure 5). Both
of these reports cover only the call chains, that ended with
sensitive data processing.

All the reports listed above allow us to observe several levels
of the attack surface:

« All processes that were executed.



L— bash pid: 630 uid: 0 : /bin/bash
|—[redis-server| pid: 667 uid:0 :./redis-server *:7777
j— bash pid: 675 uid: 0 : /bin/bash
L [python3 pid: 675 uid: 0 : python3 redis_get.py
|— python3 pid: 676 uid: 0 : python3 redis_get.py
L uname pid: 676 uid: 0 :uname-p
}— containerd pid: 343 uid: 0 : /usr/bin/containerd
|— login pid: 339 wuid: 0 : /usr/bin/login
L bash pid: 558 uid: 1000 :-bash
|—Ipython3| pid: 564 uid: 1000 : python3 redis_daemon.py
| — python3 pid:672 uid: 1000 : python3 redis_daemon.py
| L—Ish pid:672 uid: 1000 :/bin/sh -c curl https://google.com
| j— sh pid: 673 wuid: 1000 : /bin/sh -c curl https://google.com
| L—leurl pid: 673 uid: 1000 : curl https://google.com
L— su pid: 567 uid: 0,1000 : /usr/bin/su
L— bash pid: 568 uid: 0 : /usr/bin/bash
L— run.sh pid: 569 uid: 0 : /usr/bin/bash
L |docker| pid: 570 uid: 0 : docker run-p 7777:7777 -v /hi
|—|dockerd| pid:374 uid: 0 : /usr/sbin/dockerd -H fd:// ~containerd=/run/contai
| L docker-proxy pid: 597 uid: 0 : /usr/sbin/docker-proxy -proto tcp -host-i|
|— systemd-timesyn pid: 321 uid: 104 : /lib/systemd/systemd-timesyncd
|— systemd pid: 544 uid: 1000 : /lib/systemd/systemd --user
|— dbus-daemon pid: 331 uid: 103 : /usr/bin/dbus-daemon --system —address=
|— systemd-logind pid: 334 uid: 0 : /lib/systemd/systemd-logind
L— cron pid:330 uid: 0 : /usr/sbin/cron -f

Figure 8: Fragment of the process tree. It includes privileged
processes (red) and processes that accessed tainted data (blue
and dark red).

unix

tep: 142.251.1.139:443

[devitty1

python3

/ curl -
redis_daemon.py

private-memory

private=memory

sh

Figure 9: Tainted data flow through processes, files, and
sockets.

Processes, that work with sensitive data.

Dynamic libraries and executables, that work with sensitive
data.

Functions in the executables, that accessed the sensitive
data, and their call chains.

Python functions and scripts, that worked with sensitive
data, and their call chains.

8

We wanted to choose some real life (or similar) application
with many components, but not too heavy to analyze. There-
fore we have chosen a web application, based on Django.
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Figure 10: Tainted data flow through dynamic libraries and
executables, data files, and sockets.

Django is the complex Python-based framework for creat-
ing web applications'. Its marketing description includes the
phrase “you can take web applications from concept to launch
in a matter of hours”. The opposite side of this kind of
simplicity, is the huge amount of code inside the framework
itself and packages, required by Django.

If one needs to reuse some Django-based web component
in the sensitive application, then this component should be
thoroughly tested. But which code to test? Attack surface
detection methods should give us the answer.

We used sample Django-based application® to demonstrate the
usefulness of system-wide data flow analysis for analysis of
the combination the interconnected Python scripts and binary
programs.

We set up the virtual machine with Ubuntu 22.04 OS and
installed the web sample into it. User is intended to login into
that program through the web interface and use the database
connected to the application backend. One of the possible
actions for the user — importing the CSV files, that include
list of the records, into the database. Every record includes
string, integer, and date fields.

The contents of the uploaded CSV file was tainted and we
examined the resulting reports, generated by Natch.

First, we discovered the architecture of CSV processing work-
flow: packet comes from the external network and processed
by Linux kernel, libc socket functions, Python interpreter, and
SQLite database (Figure 11).

This figure shows, that some portions of the tainted
data are processes by SQLite. We can examine the call
graph and find the SQLite functions, responsible for that:
_pysglite_query_execute from CPython dynamic li-
brary, sqlite3VdbeExec from 1ibsglite3. so. These
functions may be fuzzed as a part of attack surface, because
they receive user-generated data in the parameters. Finding
bugs is not the aim of our research, therefore we will not dive

Ihttps://www.djangoproject.com/
Zhttps://github.com/app-generator/sample-django-charts-argon
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python3 tcp: 10.0.2.2:36796

Figure 11: Executable modules that process the input CSV
data. Red one is the Linux kernel. There is also a temporary
file, which is used in data processing.

too deep into the fuzzing.

Python interperter itself is not in the analysis scope, because
it uses script code and input network traffic (including target
CSV) as an input. Script code changes the logic of the analysis,
because different kinds of input data may pass through the
same interpreter functions. That is why we reconstructed call
graph for the Python functions and found the following call
stack entries that used the tainted data directly or though the
called helpers:

e _strptime — parsing the date and time from the input
(CPython standard library).

CSV.create_dataset — converts CSV stream into
Dataset object (djando-import-export package).
SQLInsertCompiler.prepare_value — prepares a
value to be used in SQL query (SQL compiler from Django).
SQLiteCursorWrapper.execute — converts inputs
to be passes to SQLite database (SQLite adapter from
Django).

Template.compile_nodelist — compiles HTML
page with uploaded data (template compiler from Django).

After that, one may want to analyze or test these functions.
E.g., first function, _strptime, may be fuzzed with the
following code:

#!/usr/bin/python3
from _strptime import _strptime
from pythonfuzz.main import PythonFuzz

@PythonFuzz
def fuzz (buf):
try:
string buf.decode ("ascii")
_strptime (string)
except UnicodeDecodeError:
pass
except ValueError:
pass

3We haven’t found any bugs in _strptime. This is a function from
standard CPython library, and is probably well-tested already.
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if name == '_ main_ ':

fuzz ()

The similar fuzzing wrappers may also be created for other
functions and classes, with some efforts for creating the correct
context.

We also recovered the complete list of Python application
modules and dependencies, that can be used as a target for
debloating. They were collected as for the whole “login-
upload-logout” scenario, and only for part, which covers
“upload CSV-get reply”.

The complete exported report and some screenshots from
interactive analysis pages can be observed at https://github.
com/Dovgalyuk/QRS2023_materials.

9. CONCLUSION AND FUTURE WORK

In this work we created some new methods for virtual machine
introspection and attack surface analysis. These methods were
implemented within the Natch tool. This tool allows recovering
the runtime architecture and finding the attack surface for
the complex systems, that include many interconnected binary
executables and scripted programs, written on Python. Natch
was tested with most of the popular Linux distributives and
all commodity CPython versions.

After the successful implementation of the hybrid introspec-
tion for the CPython, we plan to extend it to other scripting
languages, like JavaScript and Lua, or bytecode/JIT machines
like Java and .NET/Mono.
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