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Abstract—Testing is an integral process in the development
life cycle of a Smart Contract, especially considering the
immutable nature of blockchains. Thus, rigorous testing of
smart contracts is necessary to identify defects or vulnera-
bilities and correct them before deployment. This proactive
approach prevents any unfair advantages that may be exploited
by one or more entities within the smart contract. In this
paper, we present a three-layered approach for prioritizing
test cases using gas consumption values and frequency of test
case targeting methods, aiming to enhance the efficiency of
the testing process. We illustrate our approach by applying to
the smart contract Ballot.sol. We used the Ethereum Virtual
Machine environment, and generated test cases using the
Bounded Model Checker engine of the Solidity compiler.
Additionally, we created manual test cases to simulate real-
time smart contract behavior. We use the test cases of the
Ballot.sol contract to showcase the prioritized list of test cases
along with their respective individual and cumulative statement
coverages. Our approach offers a faster testing environment for
smart contract deployment.

Keywords—Smart Contracts; Test Case Suite; Gas, Frequency

1. INTRODUCTION

Smart contracts play an important role in blockchain tech-
nology. It enables self-executing agreements with predefined
rules and conditions. As smart contracts continues to grow
across various industries, ensuring their reliability and security
becomes difficult. By comprehensive testing this critical aspect
can be assured.

Testing smart contracts involves the creation of test cases that
assess their functionality, efficiency, and security. However, not
all test cases are created equal. Some may trigger more com-
plex code paths or consume more gas than others, impacting
the efficiency and effectiveness of the testing process [2].

In response to this challenge, this paper introduces an approach
for Smart Contract Test Case Prioritization based on Frequency
and Gas Consumption. Our method aims to optimize the test-
ing process by selecting a subset of test cases that strike a bal-
ance between runtime efficiency and coverage. By considering
the frequency of test case targeting and the gas consumption
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associated with each test case, we can prioritize the most
critical test cases while reducing unnecessary redundancy.
We delve into the details of our approach, illustrating its
application with the Ballot.sol smart contract. We explain
how our algorithm selects the best subset of test cases to
run, minimizing runtime without significantly compromising
branch and statement coverage.

Checking for the correct execution of code requires test cases
to be written for the smart contract. These smart contract test
cases are written by testers and target particular parts of the
code and match the output of the block with the expected
output using assertion statements. These test cases might hold
different amounts of significance to the process of testing, i.e.
a particular test case might cause the execution of a larger
segment of code (more functions) for a given input than some
other test case. Further, a test case might also check the
execution of multiple functions of the smart contract.

In addition to this, some functions might have to be executed
multiple times to check output for different inputs. This sug-
gests that different test cases might have different complexities
in terms of gas consumption and method calls made. So, it
is clear that different test cases have different priorities. It
might hence not be possible to run all these test cases over
and over again in the process of development. This gives us
the motivation to devise an algorithm to find the best subset of
test cases to run so that it reduces the run time and also does
not compromise the branch/line coverage to a large extent.
The rest of the paper is organised as follows: Section 2
presents the basic concepts of the work and Section 3 discusses
the relevant related work. Section 4 presents the proposed
approach and Section 5 discusses the results analysis. Finally,
Section 6 concludes the paper.

2. BACKGROUND

In this section, we discuss fundamental concepts necessary to
understand the proposed approach.

2.1. Ethereum Virtual Machine (EVM)

The Ethereum Virtual Machine (EVM) is a simulated
blockchain environment that runs locally on a system, repli-
cating the behavior of a blockchain. This platform proves
exceptionally valuable for the development and testing of
smart contracts. It consolidates all blockchain operations into
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one system, significantly accelerating transaction processing
and reducing development and testing time. In this paper, all
experiments have been conducted within the Hardhat environ-
ment [5].

2.2. Smart Contracts and Gas Consumption

Smart Contracts are essentially agreements deployed on the
blockchain, each containing a set of conditions. Once these
conditions are met, the predefined transaction is executed
automatically. It is important to note that deploying these smart
contracts on the blockchain requires altering the blockchain’s
state. Miners play a crucial role in this process, competing to
win the bid for mining smart contracts by solving complex
mathematical puzzles. The winning miner earns the right
to execute the transaction. Solving these intricate puzzles
consumes a significant amount of electricity. The complexity
of a smart contract directly correlates with the cost of mining
it. Gas, a computational unit, quantifies the state change in the
blockchain.

2.3. Unit Test Cases for Smart Contracts

Unit test cases are code segments designed to test one or
more parts of the code. This is done by providing inputs
and verifying the outputs of smart contract methods against
expected results, typically using assert statements as shown in
Listing 1.
it ("test case name or number", async function() {

let result = SmartContractFactory.method (Input

Parameters) ;

assert.equal (result, expected output);

Listing 1: Example Solidity Test Case

For the purpose of this work, we have considered test cases
generated by the Bounded Model Checker (BMC) engine
of the Solidity compiler. These test cases are produced as
counterexamples, which are then translated into test cases. Ad-
ditionally, we have incorporated manual test cases to align with
industry practices for test case development. This combination
of automated and manual test cases provides a robust set of
test cases for evaluating the algorithm.

2.4. Bounded Model Checker (BMC)

While the test cases can also be generated through alterna-
tive techniques or manual authorship, the proposed algorithm
remains consistent across all cases. In the example test suite
presented in this paper, test cases are generated using Bounded
Model Checker (BMC), as well as manually [6].

3. RELATED WORK

Regression testing is the process of assessing the functionality
of code after the addition of new code or features. This practice
is standard in the field of software testing and is critically
important for the overall proper functioning of the code.
Improvements to regression testing, such as the introduction
of selection algorithms for identifying the best test case suite
and selecting test cases based on the time complexity of
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algorithms for that test, have been previously developed in
classical centralized system development environments [1].
These advancements can be categorized into two types of
modifications, including algorithms like the execution slice
technique [3] and modification-traversing tests [4].

Another category of regression testing is minimization or
prioritization-based regression testing. This approach involves
considering the most critical test cases. Various methods have
been proposed to achieve this objective, ranging from slicing
the most vital segments of the test cases to obtain a set of
the most significant test cases [3] to prioritizing test cases
based on their running time or time complexity. In the field
of testing smart contracts, there are tools available, such as
SolAnalyser', for identifying errors in smart contracts through
code analysis and vulnerability detection. They also monitor
gas consumption to determine when the gas limit has been
reached, necessitating a rollback of the smart contract [7].
Regarding test case prioritization in classical systems, there are
proposed approaches that utilize Software Agents and fuzzy
logic. This approach aims to extract information from test
cases to understand faults in the code and then prioritize them
using this information [8].

Smith et al. [10] conducted a comparative analysis of test
case prioritization techniques in the context of smart contract
development. Brown et al. [11] focus on efficient test case
prioritization specifically tailored for Ethereum smart con-
tracts. It delves into techniques and strategies to prioritize
test cases effectively, considering the unique characteristics
of smart contract development.

Wang et al. [12] showed enhancements in smart contract
testing by incorporating gas consumption analysis. Authors
addressed on smart contract testing, that is, gas consumption
analysis. This is to optimize the testing process by integrating
an analysis of gas consumption which is an important factor
in the execution of smart contracts on blockchain platforms.
Due to the impact of gas consumption on the stability and
performance of contracts, the authors propose new testing
methodologies. This is important because it identifies and
rectifies potential vulnerabilities.

Chen et al. [13] proposed a novel test case prioritization
method for smart contracts based on static analysis techniques.
Garcia et al. [14] provided strategies for Ethereum’s contract
topology. These will be helpful in testing strategies and
priorities in the context of smart contracts.

Test case prioritization methods have been evolved for smart
contracts to improve testing efficiency [15, 16]. Ma et al. [16]
explored prioritization strategies specific to Ethereum smart
contracts. Yang et al. [15] introduced a prioritization approach
that considers code coverage and fault detection effectiveness.
Blockchain-based testing methods have emerged to address
the unique challenges of smart contract testing [17, 18].
Tikhomirov et al. [17] introduced SmartSeeds, a tool for
generating effective test cases, and Cheng et al. [18] presented
Chainr, a framework for blockchain testing, including priori-
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tization features.

Empirical studies have been conducted to evaluate the effec-
tiveness of test case prioritization techniques in the context
of smart contracts [19, 20]. Amrhein et al. [19] conducted
an empirical analysis of test case prioritization in Ethereum
contracts, while He et al. [20] proposed a test prioritization
approach based on historical test execution data.

Machine learning techniques have been applied to smart
contract test case prioritization [21, 22]. Kholidy et al. [21]
introduced an approach that utilizes machine learning models
to predict test case execution times and prioritize accordingly,
and Luo et al. [22] explored a similar concept for Ethereum
contracts. The integration of test case prioritization into contin-
uous integration and continuous deployment (CI/CD) pipelines
has been investigated to automate testing workflows for smart
contracts [23, 24]. Abbas et al. [23] discussed the incorpora-
tion of prioritization techniques into CI/CD processes, and Luo
et al. [24] presented a CI/CD framework tailored for Ethereum
smart contracts.

Godboley et al. [25] proposed an approach towards agile
mutation testing using a branch coverage-based prioritization
technique. They applied an efficient method to prioritize muta-
tion testing for programs. This significantly reduces the testing
time and resources which is needed for mutation analysis
[25]. Monika et al. [28] developed a tool gMutant for faster
mutation testing. Agarwal et al. [26] proposed a technique
for cyclomatic complexity analysis of smart contracts using
control flow graphs (CFG). They evaluate the complexity
of smart contracts, which is crucial for identifying potential
vulnerabilities and improving contract design [26]. Godboley
[27] proposed SmartMuVerf which addresses the challenge of
ensuring the correctness and security of smart contracts by
verifying the behavior of mutants, providing a valuable tool
for smart contract developers and auditors [27].

4. PROPOSED APPROACH
In this section, we present our proposed approach.
4.1. Motivation

This paper introduces an algorithm for prioritizing test cases
based on gas consumption and frequency. Firstly, when a
particular test case consumes more gas, it implies that more
computation is necessary to change the state of the blockchain.
This, in turn, suggests that the test case targets a larger portion
of code or involves more complex code segments. Conse-
quently, the specific test case or method under consideration
becomes essential, as it is expected to cover more lines of code
and deal with a greater number of code branches. This results
in greater testing algorithm effectiveness due to increased line
and branch coverage.

Secondly, if a particular part (method or data structure) appears
in multiple test cases, it implies that this section of code holds
particular interest to the tester (if manual test cases are written)
or the model checker engine. Multiple checks with different
input parameters are required, indicating that the methods
or data structures targeted by more test cases are of greater
importance.

Algorithm 1: Layer 1 of Prioritization

Input: fitnessValueOfMethod = [],
Layer1PrioritizedArray = [],minimumGas = oo,
maximumGas = 0;

foreach method € methodToGasConsumed do

if method— >gas > maximumGas then
‘ maximumGas <— method— >gas;

if method— >gas < minimumGas then
‘ minimumGas ¢ method— >gas;

Set maximumTestCases = co, minimumTestCases = 0;

oreach method € methodToTestCases do

if method— >testCasesNumber > maximumTestCases
then

l maximumTestCases <+

i

=]

method— >testCasesNumber;
method— >testCasesNumber < minimumTestCases
then
‘ minimumTestCases <

method— >testCasesNumber;
Set maximumTestCases = co, minimumTestCases = 0;
foreach method € methodToTestCases do
if method— >testCasesNumber > maximumTestCases
then
l maximumTestCases <
i

method— >testCasesNumber;
method— >testCasesNumber < minimumTestCases

then
minimumTestCases <

method— >testCasesNumber;

Set normalizedTestCase = (), normalizedGas = 0),
newMax = 1, newMin = 1;

foreach method € methods do

frequencyNormalization <
((method.testCases Number —
minimumTestCases) /(mazimumTestCases —
minimumTestCases)) * (newMax — newMin) +
newMin;

gasNormalization
((method.gas—minumumGas)/(mazimumGas—
minimunGas))*(newMax—newMin)+newMin;

normalizedT estCase[method]
frequencyNormalization ;

normalizedGas[method] < gasNormalization ;

foreach method € methodToTestCases do
Layerl Prioritized Array.add((method, methodT o—
TestCases[method]);

foreach method € methodToTestCases do

LayerlPrioritized Array.sort(key = lambdax :
0.5 * normalizedTestCases[z[0]] + 0.5 *
normalizedGas[z[0]], reverse = True);

resultantBoxes = 0 ;
foreach box € LayerlPrioritizedArray do
L resultant Bozes.add(box[1]);

return resultantBoxes;
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Layer 1

Prioritizes test cases based fitness values.

cases per method)

f.v =05 " (gas consumed per method) + 0.5 * (frequency of test

Layer 2

cases

Prioritises test cases based of gas consumption values of test

Priority

Layer 3

number of methods.

Resolves contention between two or more test cases
occurring one after the other with equal gas values. This is
done by giving preference to the test case that targets most

Figure 1: Framework of Propsoed Idea

4.2. Prioritization Algorithm

The proposed idea follows a three-layered approach. It op-
erates sequentially, which means it prioritizes Layer 1 first,
followed by Layer 2, and lastly Layer 3 as shown in Fig. 1.

4.3. Layer 1

Algorithm 1 illustrates the implementation of Layer 1. In
Layer 1 of the idea, we consider the average gas consumed
by each method and the number of test cases that invoke each
particular method. Since gas values are often very large, and
the number of test cases calling a method varies, we normalize
these values to fall within the range of [0, 1]. We iterate
through the methods to calculate these values for all functions,
storing them in two separate data structures.

Once these values are normalized, a fitness function denoted
by f.v is defined in Eq. 1.

‘ fv = (methodGas;) x 0.5 + (testCasesPer Method;) X 0.5‘
M
Here, methodGas; represents the gas consumed by the i-th
method, and testC'ases Per M ethod; represents the number of
test cases targeting that method, which is also referred to as
the frequency value. methodGas; is constrained to the range
[0, 1].

Next, we create another data structure that stores the test cases
for each of the methods. Let us assume that these are the boxes,
where each box contains the number of test cases for a method
j, where j belongs to N (the total number of methods in the
Smart Contract). These boxes are indexed by their respective
methods and then sorted in descending order based on the
value of each method’s fitness function. The result of Layer 1
is a two-dimensional array with test cases in each row.

It is important to note that in Layer 1 of the algorithm,
the weight values (coefficients for gas value and frequency
value) are both set to 0.5. We have selected these weights
for our algorithm to equally prioritize both gas consumption
and frequency in the first layer of assessment. It’s worth
recognizing that there are no universally applicable weight
values for prioritizing test cases since the prioritization may
need to be tailored to the specific requirements of the smart
contract under consideration. Therefore, these weight values
are adjustable. However, it is crucial to maintain the constraint
that the sum of these two weights equals 1. This constraint is
necessary to ensure that the values stay within a normalized
range of 0 to 1, achieved through min-max normalization, as
applied to both gas values and frequency values. For these
purposes, we used weight values of 0.5 for both gas and
frequency in this paper.
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Algorithm 2: Layer 2 of Prioritization

Algorithm 3: Layer 3 of Prioritization

Input: resultantPrioritizedTestCaseListAfterLayer2 = () ;
foreach method <
TCRankingAfterFilteringBasedOnTestCasesPerMethod
do

method.sort(key = lambdax :

x.gasConsumption, reverse = True);
foreach TestCase € method do
if TestCase ¢
resultant PrioritizedT estCaseListA fter Layer2;

then
resultant PrioritizedT estCaseList A fter Layer2
.add(TestCase);

end
end
return resultantPrioritizedTestCaseListAfterLayer2

4.4. Layer 2

Algorithm 2 illustrates the implementation of Layer 2.
After receiving the 2-dimensional array from the first
layer, the initial task is to eliminate redundant test cases.
Let PrioritizedTestCasesAfterLevell represent the 2-
dimensional array obtained from Layer 1. If there are
i rows and j columns, then the number of columns in
PrioritizedTestCasesAfterLevell is j. If a test case is
redundant in two rows, let’s say in rows k and [ where k
is less than [, we remove the redundant test case from row
l. This ensures that the Layer 2 approach does not override
the priority of Layer 1. Next, we concatenate all the rows
of PrioritizedTestCasesAfterLevell into a 1-dimensional
array. Then, we sort this 1-D array in descending order based
on the gas consumed by each particular test case. Let’s call
this 1-dimensional array GasPrioritizedTestCases.

4.5. Layer 3

Algorithm 3 demonstrates the implementation of Layer
3. After Level 2, it is possible that two test cases
with the same priority are placed consecutively, fol-
lowing a first-come, first-served basis. However, this
is not desirable. So, we introduce another parameter:
numberO f MethodsTestCaseHasTargeted. We employ
the two-pointer approach to address this issue. If there exists a
sub-array in the GasPrioritizedT estCases array where all
the test cases have the same gas consumption, we sort these
test cases in descending order based on their gas values within
that specific sub-array. This layer eliminates redundancies of
any type to produce a prioritized list of test cases.

5. EXPERIMENTAL STUDY

In this section, we discuss a case study with the Usage, Walk-
through, and results.
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Imput: i < 0,j < 1;
while ¢ < TCRankingAfterApplyingGasConsumptionPri-
oritization.size() and j <
TCRankingAfterApplyingGasConsumptionPrioritiza-
tion.size() do
hasIncreased <+ O ;
while testCaseTo-
Gas[TCRankingAfterApplyingGasConsumption
Prioritization[j]] == testCaseTo-
Gas[TCRankingAfterApplyingGasConsumption
Prioritization[i]] and j <
SIZEOF(TCRankingAfterApplyingGas
ConsumptionPrioritization) do
JeJ+1y
hasIncreased < 1 ;
end

if hasIncreased == 1 then
TCRankingAfterApplyingGasConsumption

Prioritization[i:j].sort(key:lambda,
numberOfMethodsTheParticularTestCaselsTar-
getting,reverse = True);

end

end

return
TCRankingAfterApplyingGasConsumptionPrioritization

TABLE I: Methods in Ballot smart contract

‘ #M ‘ MName ‘ AGas ‘ fv
1 | giveRightToVote | 340551 | 0.215716
2 delegate 789349 0.5
3 vote 165918 | 0.105098
4 | winingProposal 0 0
5 winnerName 0 0
6 chairPerson 0 0
7 voters 2 0.500001
8 Proposals 0 0

5.1. Usage

We utilized the Hardhat EVM (Ethereum Virtual Machine)?
for this paper. Our test cases were generated using the
Bounded Model Checker of the Solidity Compiler, supple-
mented by a few custom test cases to simulate real-time system
scenarios. The primary smart contract employed in this context
is Ballot.sol [9].

The average gas consumption values for each method are
shown in Table 1. The Ballot.sol smart contract includes a
total of eight methods. Column 1 of Table I shows the Method
Number represented by #M and Column 2 shows the Name
of the Method represented by MName. Column 3 shows the

Zhttps://hardhat.org/hardhat-network/docs/overview



TABLE II: Original

TABLE III: Prioritised

1 0 20 | 92915
2 0 27 | 71759
3 | 48645 25 | 71759
4 | 48645 24 | 71759
5 | 48645 7 71759
6 | 48645 8 71759
7 | 71759 12 | 71759
8 | 71759 13 | 71759
9 | 48657 15 | 71759
10 | 48657 16 | 71759
11 0 17 | 71759
12 | 71759 18 | 71759
13 | 71759 9 48657
14 0 10 | 48657
15 | 71759 21 | 48657
16 | 71759 4 48645
17 | 71759 6 48645
18 | 71759 5 48645
19 0 3 48645
20 | 92915 14 0

21 | 48657 11 0

22 0 22 0

23 | 73003 26 0

24 | 71759 23 | 73003
25 | 71759 1 0

26 0 2 0

27 | 71759 19 0

BALLOT SMART CONTRACT

Method (1)

<

Method(2)

Test Cases

3,456,9,10,21.22

Method(3)

Test Cases

7,.8,11,12,13,14,15,16,17
18,24,2526.27

Method(4)

Test Cases

2023

Method(5)

Test Cases
23

Method(6)

Test Cases

23

Method(7)

Test Cases
1,2,19,21

ANV ANEVANERANEVANERVAN

Method(8)

Test Cases
3456,7.891011,1213,14
15,16,17,18,20
212224252627

Test Cases

Figure 2: Methods and their associated test cases

Method 7 — 34567891011 12;5321;217516171820212224

Method 2 7811121314151617 18242526 27

Method 1

34569102122

Method 3  I— 2023

Priority

Method 4

N
o

Method 5

N

Method 6 121921

v Method 8

Figure 3: Output of Layer 1

average gas consumption represented by AGas. Column 4
shows fv fitness values for all the methods using Eq. 1. To
maintain simplicity, we use the serial numbers of the test cases
to refer to the methods in the subsequent discussion.

The Computed Gas for the Test Cases are shown in Table II.
The order of the test is considered Original, that is, as per
the sequence of test cases. In Table II, Column 1 shows T1d
represents Test Case Id and Column 2 shows GAS which is
the amount of GAS consumed for a test case.

The test cases that target specific methods in this case study
are presented in Fig. 2. It is important to observe that some
test cases target multiple methods. This occurs when a single
test case is designed to assess the interaction between multiple
methods.

5.2. Walk-Through

Now, consider the data outlined in the previous section and
systematically walk through the algorithm.

In Layer 1, the algorithm prioritizes the methods based on
their fitness values. To accomplish this, it calculates the fitness
values for each of the methods and arranges them in sorted
order. In our case study, the methods are sorted in descending
order of their respective fitness values, as illustrated in Fig. 3.
Next, we progress to Layer 2. In this layer, the algorithm
arranges each of the test cases that target specific methods
by their gas consumption in descending order. This sorting
process is depicted in Fig. 4. As a result, the test cases are now
organized in a relatively more sorted and prioritized manner,
as opposed to being entirely random.

In Layer 3 of prioritization, the algorithm focuses on iden-
tifying two or more adjacent test cases with the same gas
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20,27,25,24,7,8,12,13,

Method 7 15,16,17,18,9,10,21,4,6,5,3,4,11,22,26

Method 2 27,2524,7,8,12,13,15,16,17,18,14,11.26

Method 1 9,10,11,465322

Method 3 20,23

Method 4 23

Method 5 23

Method 6 21,1219

Method 8

S A A

Figure 4: Output of Layer 2

consumption. It then prioritizes the test cases that target a
higher number of methods. This prioritization approach is
detailed in Table III. The order of test cases is as per the
Prioritisation of Test Cases based on computed GAS. Column
1 shows PTId which represents Prioritised Test Case Id.
Column 2 shows GAS which represents the amount of GAS
consumed for a test case.

5.3. Results

Table IV is intended to provide an understanding of the cumu-
lative code coverage of the prioritised test cases. We target to
save time and resources during the testing process while not
substantially reducing the effort required for regression testing.
Columns in Table IV show the rankings of the test cases T,
where 7 is the test case position. The upper triangle of the
first cell in Column 1 shows the Rank, and the lower triangle
of the first cell shows #TCs i.e. total number of collected test
cases. Cells colored with Magenta show that the positions for
the test cases are empty. It means, these test cases are not
considered to compute the Cumulative Statement Coverage.

Consider that "Y%" represents the maximum code coverage
achieved by all the test cases combined. Also, note that each
individual test case has a certain code coverage, denoted as
"X%" (the value of X may vary for each test case). The
statement coverage of each individual test case as per Original
Order is provided in Fig. 5. With the list of prioritized test
cases, our goal is to demonstrate the effectiveness of our
algorithm by showing that we can attain the maximum possible
code coverage percentage, Y% through a set of test cases taken
in the prioritized order. This subset of test cases is now smaller
than what we initially had. This will lead to time and effort

savings during regression testing since we would only use this
particular subset of test cases that provides maximum code
coverage.

It is essential to note that this approach is strictly reliant on the
code coverage aspect, which is derived from the frequencies
and gas consumption values of methods and test cases. This
approach compromises if the tester has written test cases that
focus on checking specific edge cases’ functionality rather than
covering the code.

There are a few interesting cases to discuss, which are
highlighted in green color, in Table IV. The Test Case suite
comprises 27 test cases.

The first scenario, considers only 1 test case which is the
highest ranked test case i.e 7Id 20 which leads to 27.78%
of statement coverage. The detailed coverage report is shown
in Listing 2. Almost, one-fourth of overall code coverage is
taken with this test case alone. Assume that, the budget of test
cases was approx. 28% code coverage then only this test case
was sufficient, and the other 26 test cases would have been
discarded.

percentage of statements covered: 27.78
percentage of branches covered: 10

: percentage of functions covered: 33.33
percentage of lines covered: 31.25

: percentage

Listing 2: Prioritization Coverage report for top 1 TC

Now, adding the next high ranked test case i.e. TId 27, the
statement coverage achieved is 61.11%. The detailed coverage
report is shown in Listing 3. Considering this scenario, only
2 test cases are power full enough among all other test cases
to achieve more than 60% of overall code coverage.

of statements covered: 61.11

of branches covered: 25
of functions covered: 50
of lines covered: 59.38

percentage
percentage

percentage

Listing 3: Prioritization Coverage report for to 2 TCs

Further, if we keep on adding the test cases from TCs 3
to 12 then the cumulative statement coverage remains same
i.e. 61.11%. The detailed coverage report is shown in Listing
4. But as soon as we add another test case i.e. 13th TId
then the cumulative statement coverage achieved is 77.78%.
After prioritization by our algorithm, considering only the
top 13 test cases {20,27,25,24,7,8,12,13,15,16,17,18,9}, the
coverage report is shown in Listing 3. Almost 50% of 27 test
cases achieved approx. 78% of cumulative statement coverage,
which is significant result.

Next, we can observe TId 14th to 23rd viz. {10, 21, 4, 6, 5,
3, 14, 11, 22, 26} are ineffective to achieve more statement
coverage. But, as soon as we add TId 24th i.e. 23 then cumu-
lative statement coverage achieved becomes 94.44% which is
the maximum coverage achieved. The detailed coverage report
is shown in Listing 5. Later, we can observe that, TIds 25th
to 27th are ineffective. Also, the total coverage for all 27 test
cases is shown in the Listing 5.

Importantly, by this analysis we can choose a set of test cases
that are really contributing to maximal statement coverage as
per the budget.

286



vry6 61 | T ecc|oc | |1 ¥y €| S| 9 v [ 1C|01| 6 8T | LI |91 |ST €l CT |8 | L ¥C|ST|ILC 0T LC
Y16 [4 €C|9C | T 11| Pl €1 S 19 | v [ IT|O0I] 6 |8 |LI 9T |ST|€I|CT|8 | L |VC|ST|LT 0T 9¢
|4 A%0) €C19C | CC 1L vl €1 S 19 | v [ IC|O0L] 6 |8 |LI 9T |SIICI|CI| 8| L |¥C|IST|LT OC g¢
¥¢
8L'LL Oc | CC | Tl | ¥I| €| S |9 ¥ |1C|0L | 6 | 8L |LI |91 |ST|€T|CI| 8| L |VC|ST|LC|0T 194
8L'LL Iyl €1 S |19 ¥ [ 1C|0L | 6 | 8L |LI 9T |SI|CI|CI| 8| L |¥C|ST|LC|0T (44
8L'LL vl €1 S 19| v | 1C|0L] 6 |8 LI 9T |STIEI|CI| 8| L |¥C|SC|LT|OC 1c
8L'LL VI € S 19 | ¥ |[I1C|0l] 6 8 |LI|9T|ST|€TCT |8 |L ¥C|SC|ILC|OC 0¢
8L'LL € | S 19| v | IT|01] 6 |8L|LL 9T ST |€I|CI|8 | L |¥C|ST|LT 0T 61
8L'LL Sl 9| v |[IT|O0L] 6 [ 8L |LI |91 SI|CI|TL|8 | L |¥C|SCT|LT OC 81
8L'LL 9 ¥ (1C|0L| 6 | 8L | LI |OI |ST|€T|CI| 8| L |¥C|ST|LC|OT Ll
8L'LL v |1 01| 6 | 8L | LI |91 |ST €T |CI| 8| L |¥C|ST|LC 0T 91
8L'LL IC]01 | 6 8T | LI |91 |ST|€l|TT1| 8 | L |¥C|SC|LT 0T Sl
8L'LL Ol | 6 | 81 | LT |91 |ST €T |CI| 8 | L |¥C|SCT|LT OC 14!
el
1119 8L | LT | QT |ST|€T|CI| 8| L |¥C|ST|LC|0T 4!
L1°19 LI O |ST|CT|CI| 8| L |¥C|ST|LC|0T 4!
1119 Ol |ST|€l|CI| 8 | L |¥C|ST|LC|0OT 0l
1719 STl |CI| 8| L |¥C|ST|LC|OC 6
1119 ¢l |CI| 8| L |¥C|ST|LT|0C 8
[1°19 Cl| 8| L |¥C|SC|LT| 0T L
1119 8 | L |¥T|ST|LT|0C 9
1119 L |¥C|ST|LT 0T g
1119 ¥C|SC| LT 0T 14
1119 ST LT|0C €
[4
I
A0D | ol gzl | el | 32l | el | zell| el | ogll | 6rl | grl| 2ol | orl | gt | 31l | el | g1l | 1l | orl | gL | gL | L] oL | ol | 5L | el | gL | 1L L
L] ool gals | pols | gael | zael | Tek | oz | 6T 1L uT ol gl el ezl Tk ord o e fuk fodk el fed ek o gy

SINSIY Al H1dVL

287



> percentage

oW

> percentage

I

Staterment Coverage Contributed

5

6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Test Caseld
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of statements covered: 77.78
of branches covered: 40
of functions covered: 66.67

of lines covered: 71.88
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Listing 4: Prioritization Coverage report for top 13 TCs

of statements covered: 94.44
of branches covered: 55
of functions covered: 100

of lines covered: 90.63
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percentage
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Listing 5: Coverage report for top 23 TCs

6. CONCLUSION

The proposed three-layered prioritization algorithm for test
cases in the context of smart contracts presents a system-
atic and data-driven method to optimize the testing process.
We considered gas consumption and test case frequency for
identifying and prioritizing test cases. This provides com-
prehensive code coverage. This approach not only enhances
the efficiency of testing but also ensures that critical code
segments are thoroughly examined. Prioritization of test cases
was strategically demonstrated through various scenarios, after
highlighting its effectiveness in achieving substantial code cov-
erage with a limited set of tests. Utilising resources efficiently
can be done by discarding redundant or less influential test
cases. In conclusion, this prioritization algorithm stands as
a valuable tool for the blockchain development community.
This facilitates more effective and efficient testing practices
and ultimately contributes to the overall reliability and security
of smart contracts and blockchain-based applications. In the
future, we extend this work with rigorous experiments with
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more smart contracts. We will conduct an analysis to show
how the prioritised test cases are of quality. Also, we will
work on a new fitness formula with more factors.
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