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Abstract—Recent studies have shown surprising results of
source code learning, which applies deep neural networks
(DNNs) to various software engineering tasks. Like other
DNN-based domains, source code learning also requires mas-
sive high-quality training data to achieve the success of these
applications. In practice, data augmentation is a technique that
produces additional training data to boost the model training
and has been widely adopted in other domains (e.g. computer
vision). However, the existing practice of data augmentation
in source code learning is limited to simple syntax-preserved
methods, such as code refactoring. In this paper, based on the
insight that source code can be represented sequentially as text
data, we take an early step to investigate whether data aug-
mentation methods originally for texts are effective for source
code learning. To that end, we focus on code classification
tasks and conduct a comprehensive empirical study on four
critical code problems and four DNN architectures to assess
the effectiveness of 8 data augmentation methods. Our results
identify the data augmentation methods that can produce more
accurate models for source code learning and show that the
data augmentation methods are still useful even if they slightly
break the syntax of source code.

Keywords—Data Augmentation, Source Code Analysis, Pro-
gram Transformation

1. INTRODUCTION

In recent years, applying machine learning (ML) in the domain
of big code (ML4Code) [1] has gained significant attention.
MLACode leverages the power of ML, especially deep learn-
ing (DL), to extract patterns from large code corpora. The
remarkable performance of ML4Code in various downstream
code tasks, such as clone detection [2], bug detection [3], and
problem classification [4], demonstrate its immense potential
in facilitating developers in daily activity.

Well-designed model architectures and high-quality training
data are essential factors in producing programming language
(PL) models with outstanding performance. In practice, the
model architecture has been extensively studied by researchers
and many models can achieve state-of-the-art performance,
e.g., GraphCodeBERT [5]) and CodeBERT [6]. However,
preparing sufficient labeled data for model training remains
an open challenge. The challenge comes from the expensive
human efforts required for collecting, cleaning and annotating
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data. For example, annotating only four libraries of code can
take 600 man-hours [7].

To address the issue of data scarcity, integrating data augmen-
tation into training can be a promising solution. Essentially,
data augmentation generates new training data by modifying
existing labeled data under the premise that these new data
preserve the original semantics. For example, when training
an image classification model, instead of using the original
training data only, a common practice is to utilize image
transformation techniques [8] to produce more diverse images.
While data augmentation has been well-studied and proven
to be effective in other domains, such as computer vision
(CV) and natural language processing (NLP), its application
in source code learning has received limited attention and
its potential has not been fully exploited. An early trial was
performed in [9], where a number of code refactoring methods
were introduced for generating new code data. However, as
reported in [9], the performance of those methods is limited.
In this work, to bridge this gap, we investigate new data
augmentation methods to improve the performance of model
training in source code learning.

Contributions: In source code learning, raw code is often
converted into machine-readable data format by representing
it as a sequence of text tokens due to its analogy to texts [1],
where each token is represented by an integer and then fed into
the code model. Inspired by this token-based representation,
we empirically study the problem of whether existing data
augmentation approaches in NLP (that handles text data) are
effective in improving the training quality in source code
learning. Concretely, we first survey and categorize existing
data augmentation methods in the literature, and we find
seven data augmentation methods that are applicable to the
source code. Then, we adapt these methods to train code
models and investigate their effectiveness in improving the
accuracy of those models. Overall, our study considers two
mainstream programming languages (Java and Python), four
crucial downstream classification tasks (problem classification,
bug detection, authorship attribution, and clone detection), and
four DNN model architectures including two pre-trained PL
models (CodeBERT and GraphCodeBERT). In total, 1,080
models have been trained and studied in our work.

We design our large-scale study in order to answer the
following research questions:



RQ1: Can existing data augmentation methods produce ac-
curate code models? The results show that data augmentation
methods that linearly mix feature vectors in code embedding,
e.g., SenMixup, can enhance the accuracy by up to 8.74%,
compared to the training without using data augmentation.
Remarkably, the methods adapted from NLP are more effective
than the code-specific data augmentation technique, namely,
code refactoring.

RQ2: How does data volume affect the effectiveness of data
augmentation methods? The results demonstrate that when
training data is scarce, incorporating data augmentation can
help to improve the accuracy. For example, using SenMixup
can improve the accuracy of CodeBERT by up to 12.92%
compared to the DNN model training without data augmenta-
tion. However, the syntax-preserved method code Refactoring
performs surprisingly worse.

To the best of our knowledge, this is the first work that adapts
data augmentation methods from NLP and empirically studies
the effectiveness of incorporating data augmentation into train-
ing code models. Via the large-scale experiments, we found
that data augmentation methods from NLP outperform the
existing simple code refactoring data augmentation methods in
most cases, for example, in clone detection-BigCloneBench,
Back-translation outperforms code refactoring method in 3 out
of 4 cases. Even though some data augmentation methods
(e.g., Random Swap) can produce training data that slightly
break the syntax of the source code, they are still useful in
improving the quality of training in source code learning.
Besides, when training data are scarce, data augmentation
is especially important since it can significantly improve the
quality of trained code models.

To summarize, our main contributions are:

o This is the first work that adapts data augmentation meth-

ods from NLP and empirically studies the effectiveness
of incorporating data augmentation into training code
models.
Based on our empirical study, we have multiple findings
that can help developers choose the best data augmen-
tation methods to build their code models. One notable
result is that the methods that slightly break the syntax
rules of the source code are still helpful to model training
in source code learning.

2. BACKGROUND

2.1 Source code learning

In a nutshell, source code learning consists in learning the in-
formation from source code and using the learned information
to solve the downstream tasks, such as code clone detection [2]
and bug detection [3].

As mentioned in Section 1, code representation is a crucial
technique that converts source code into a DNN-readable
format to learn the features [10]. In this paper, we con-
sider the widely-used code representation, namely sequen-
tial representation [1]. Sequential representation transforms
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the source code into a sequence of tokens (in a simi-
lar way to handling text data), where a token is the ba-
sic component of the code, such as a separator, an op-
erator, a reserved word, a constant, and an identifier. In
this way, the original source code is processed to a num-
ber of tokens, e.g., “def func(a, b)” is transformed to
“I["def’, "func’, "(', "a’, 'b’", ’")']. Sequen-
tial representation keeps the context of the source code, which
is useful for learning the syntactic information of source code.

2.2 Data augmentation in source code learning

Despite the great advantages of DNN, there are two main bot-
tlenecks that prevent DNNs from achieving high performance,
1) the lack of high-quality labeled training data and 2) the
different data distribution between training data and testing
data. One simple solution to these two problems is to increase
the size and diversity of training data. Data augmentation
is proposed to automatically produce additional synthetic
training data by modifying existing data without further human
effort [11]. Generally, data augmentation involves a family of
well-designed data transformation methods. For instance, in
image processing, commonly used data augmentation methods
include re-scaling, zooming, random rotating, padding, and
adding noise.

Recently, software engineering researchers also considered
data augmentation in source code learning [12], [13], and the
proposed methods are known as code refactoring.

In general, code refactoring, originally used for code sim-
plification, involves a family of techniques that rewrite the
syntactic structure of source code while keeping the semantic
information [14]. Commonly-used code refactoring techniques
include local variable renaming, duplication, dead store, etc.
For instance, local variable renaming is a method that changes
the names of a code element, including symbols, files, directo-
ries, packages, and modules. Technically, this method modifies
the source code slightly but does not change the semantic
behavior of the program.

However, existing studies [9], [15] have shown that these
simple strategies have limited advantages in improving the
performance of code models. In this study, inspired by the
analogy of source code to texts (as mentioned in Section 2-A),
we empirically investigate whether data augmentation methods
from NLP (that handles text data) can effectively enrich the
diversity of training data for source code learning.

3. ADAPTING DATA AUGMENTATION METHODS FOR
SOURCE CODE LEARNING

As introduced in Section 2-A, source code can be represented
as sequential data. Motivated by the similarity between source
code representation (sequential tokens) and NLP data, we
explore the adaptation of NLP-inspired data augmentation
methods for source code learning.

Specifically, we follow recent survey papers [16] to identify
seven data augmentation methods that are applicable to source
code, as shown in Fig. 1. These methods are classified into
three categories as follows:
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Figure 1. Data augmentation methods

e Paraphrasing can express the same information as the
original form and has been commonly used in NLP [16]. In
this paper, we select the Back-translation [17] method.

e Noising-based methods slightly add noise to the original
data but keep their semantic information [18]. Four types of
noise injection methods are employed in this study, namely,
synonym replacement, random insertion, random swap, and
random deletion.

e Sampling-based methods generate new synthetic data by
linearly mixing the latent embeddings instead of directly
operating on the raw text data. Unlike other methods,
sampling-based methods are task-specific and require both
data and label formats [16]. In this paper, we select two
advanced sampling-based data augmentation methods used
in NLP, namely WordMixup and SenMixup [19].

In the following, we elaborate on these seven data augmen-

tation methods and particularly highlight the adaptations we

have made in order to handle source code data.

3.1 Paraphrasing

Back-translation (BT) This method translates the original text
into another language and then translates it back to the original
one to generate additional data. In source code learning, we
implement BT by applying the English-French translation
model bidirectionally for each statement in a program. For
example, in Fig. 2(a), after BT, we replace the statement
“in range” in the original code with “at range” and
“in the range” respectively. Note that these alterations
may slightly break the syntax of the code data, nevertheless,
they are rather minor, and the original relation between the
features and the label is still preserved in the code data.

3.2 Noising-based methods

Synonym Replacement (SR) In NLP, this method randomly
selects n words from a sentence and then replaces the selected
words with one of its randomly chosen synonyms. Different
from BT, to further enrich the diversity, SR usually refrains
from substituting strings that are semantically similar to the
original text data. Specifically, in source code learning, we
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def solve():
foriin range(1,10):
for j in range(1,10):
print("{0}x{1}={2}" format(i j,i*}))

def solve():
for i at range (1,10):
for j in the range (1,10):
print ({0} x {1} = {2}". format (i, j, i * }))

) BT program transformation

def solve():
foriin range(1.10):
for j in range(1,10):
print("{0}x{1}={2}" format(i,i))

SR‘\ def solve():

. foriinrange(1.10):

» for watt second in range(1,10):
print("{0}x{1}={2}" format(i;,i))

(b) SR program transformation

def solve():
for i in range(1,10):
for jin range(T,T0):
print("{0}x{1}={2}" format(ij,i}))

def solve():
for i in range(1,10):
for jin range(1,10):
print("{0}x{1}={2}" format(i,j,i*}))

RI \ def solve(): RS‘\
\ for i in watt indorsement second range(1,10);
N for ] inrange(T,10): |
print("{0}x{1}={2}" format(iji*}))

def solve():
foriin range(1,10):
print("{03x{1}={2}" format(i,j,i))
for j in range(1,10):

(c) RI program transformation (d) RS program transformation

def solve():
foriin range(1,10):
forjin range(T,T0):
print("{0}x{1}={2}" format(i,j,i*j))

(
RDk def solve():
for i range(1,10):
af forjin range(1,10):
print("{0}x{1}={2}".format(i,j.i"}))

(e) RD program transformation

Figure 2. Examples of data augmentation methods from NLP
to source code learning, with a code snippet from Python800-
p00000-s024467653.py (For each sub-figure, the upper part
shows the code without data augmentation, and the lower part
shows the code after applying data augmentation.)

first randomly select n statements from a program. Then, each
of the n words is replaced with one of its synonyms that
is selected at random. In Fig. 2(b), we randomly select one
statement from a program and then replace it with another
string that is generated from its synonyms chosen at random.
Similar to the case of BT, this method also preserves the
original relation between the features and the label in the code.

Random Insertion (RI) In NLP, this method randomly inserts
a random synonym of a random word into a sentence to
generate augmented text data. Different from RI used in text
data, we first select a random synonym of a random word
in the chosen statement, then randomly insert this selected
synonym into a random position of this statement. Generally,
this process is repeated n times. In Fig. 2(c), we randomly
insert the string that is generated from synonyms in a random
position of the selected statement from the original code, i.e.,
“for i in range (1, 10)”. Again, this method is able to
preserve the original relation between the features and the label
in the code.

Random Swap (RS) In NLP, RS randomly chooses two
words in a sentence and then swaps their positions. Although
the semantics of text data is, in general, sensitive to the
order of words, within a limited level of word swapping,
the text after RS is often still understandable to humans.
Therefore, RS can be used to produce augmented text data.
In source code learning, we randomly select two statements
of a program and swap their positions, and this process
is usually repeated n times. In Fig. 2(d), we randomly
select two statement “for J in range(1,10)” and



“print ("{0}x{1l}={2}".format (i, J,1%7J))”, and
swap their positions. Despite the minor alteration of the order
of the selected statements, this method can still preserve the
original relation between features and the label in the code.

Random Deletion (RD) This method randomly removes some
words in a sentence or some sentences in a document, with
a probability p, to generate augmented text data. In source
code learning, we randomly delete words in a randomly chosen
statement. In Fig. 2(e), we delete words in a statement with
probability p = 0.01. As a result, the operator “in” is
removed from the statement “for i in range(1,10);”
after RD. Similarly, this method can preserve the original
relation between the features and the label in the code.

3.3 Sampling-based methods

We introduce two data augmentation methods based on
Mixup [20], a popular data augmentation approach in computer
vision. In that context, Mixup synthesizes new image data and
their labels by linearly mixing the image features and the labels
of two selected images. It has inspired the development of
many data augmentation methods in other fields, including
WordMixup and SenMixup in NLP, introduced as follows.

WordMixup and SenMixup. Originally, WordMixup interpo-
lates the samples in the word embedding space, and SenMixup
interpolates the hidden states of sentence representations [19].
We slightly modify WordMixup and SenMixup to adapt to
source code learning. As shown in Eq. (1), there are two
variants of Mixup in our study. The first one, denoted as
WordMixup, interpolates samples in the embedding space of
statement representation, and the second one, denoted as Sen-
Mixup, conducts the interpolation after a linear transformation
and before it is passed to a standard classifier that generates
the predictive distribution over different labels. Given two
pairs (z',y') and (27,47), where z* and 27 represent the
code data, and y' and gy’ are their corresponding labels,
the interpolated new data are obtained via WordMixup and
SenMixup, as follows:

T’ﬂVOTde Azt 4 (1 — N)a?
ZSenntic = A (@ DA (=N (27)
Yioransia = N+ (1= Ay’

onttiz = M + (1= Ny

Here SenMixup follows a similar workflow with [19], and
f (-) denotes a linear transformation method that is able to
ensure that the input and the output have the same dimen-
sion. Moreover, z%, ... and x¢, .. represent the new
synthetic training data obtained by WordMixup and SenMixup
respectively, and ¥}, unzie @04 Y5, 0z, are their labels. The
parameter A denotes the Mixup ratio, and according to [20],
it is sampled from a Beta distribution with a shape parameter
a (A ~ Beta (a, @)).

To better understand how the linear interpolation method
works, we use an example to show the details of linearly mix-
ing two different programs (Program A and B from Python800

(D

17
YSenMix

Program A: Python800-p00000-s024467653.py Program B: Python800-p00001-s021152399.py

def solve():
for i in range(1,10):
for j in range(1,10):
print("{0}x{1}={2)".format(i,i*}))

height = [int(input()) for i in range(10)]
sort = sorted(height, reverse=True)
for i in range(3):

print(sortfi])

—_— DataA Data B
X;: tensor([[0.0267, 0.0814, 0.0461, .., -0.0905, -0.3976, 0.4178], ‘ \ Xj:tensor(([-0.7753, -0.0016, 0.1716,

,-0.5874,-0.3121, 0.1120] }

[0.6206, 0.0093, 0.2519, ..., -0.1972, -0.3779, 01978]];}

¥;: tensor([[1.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000 ]];} } Y:ten

0r([[0.0000, 1.0000, 0.0000,

1

! ‘

} -0.0209, 0.0794, 0.0446, ..., -0.0856, -0.3932, 0.4118])) | }
1

| |

. 0.0000, 0.0000, 0.0000) !

s Datac —__.

X tensor([-0.6149, 0.0150, 0.1485, ...-0.4880, -0.3292, 0.1732], |

,0.1749, 03810, 0.2406])) }
.., 0.0000, 0.0000, 0.0000]) |

[10.5007, 0.0233, 02104,
'Y :tensor([[0.2000, 0.8000, 0.0000,

Figure 3. An example of linear interpolation of two programs

with label 0 and label 1, respectively) as depicted in Fig. 3.
First, we map a pair of programs (Data A and Data B) into
the vector space through CodeBERT [6] and transform their
labels into one-hot vectors with 800 classes. Next, we linearly
mix the code vectors and label vectors, respectively, of Data
A and Data B as the augmented training data (Data C) that
could be used to train the model.

4. STUDY DESIGN

In order to assess the effectiveness of the data augmentation
methods in Section 3 in source code classification, we design
three research questions, as follows:

RQ1: Can existing data augmentation methods produce
accurate code models? Accuracy is the basic metric to
evaluate the performance of a trained model. Therefore, we
first assess whether data augmentation methods from NLP
can improve the accuracy of code models. These methods are
compared to training without data augmentation and training
with code refactoring method (as introduced in Section 2-B).
In this RQ, first, we prepare the original training data and
randomly initialize code models, and then train these models
using different data augmentation methods as listed in Fig. 1.
Specifically, we compare these methods in terms of two
metrics, namely, 1) the convergence speed of the model and
2) the final accuracy of the model with fixed training epochs.

RQ2: How does data volume affect the effectiveness of
data augmentation methods? Given the original goal of data
augmentation to address the issue of limited labeled data, it
is essential to explore the effectiveness of data augmentation
methods in a practical scenario with insufficient training data.
To this end, we reduce the size of the training set and repeat
the evaluation as in RQ1.

5. EXPERIMENTAL SETUP

5.1 Baseline data augmentation

For comparison, we totally collect 18 code refactoring methods
from the existing literature [12], [21], [22] as baselines, such as
local variable renaming, if loop enhance, and argument adding
in Fig. 1. For each code data, we randomly select one of these
18 code refactoring methods and apply it to the original code
data to generate augmented code data.
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TABLE I
DETAILS OF TASKS, DATASETS, AND DNN MODELS. #TRAINING:
NUMBER OF TRAINING DATA. #TEST: NUMBER OF TEST DATA.

Dataset L Task #Training #Test  Model

Java250 Java Problem classification 48,000 15,000

Python800 Python Problem classification 153,600 48,000 BagofToken
CodRepl Java Bug detection 6,944 772 SeqofToken
Refactory Python Bug detection 3,380 423 CodeBERT

GCJ Python Authorship attribution 528 132 GraphCodeBERT
BigCloneBench  Java Clone detection 90,102 4,000

5.2 Tasks and datasets

Code classification servers for estimating programs’ function-
ality automatically, which is crucial for software reuse [4].
Therefore, we first focus on code classification. Table I
presents the dataset and model details. For all datasets, we
directly follow the settings provided by the official projects to
split the data into training, validation, and test sets.

Problem classification is a typical source code learning task
that classifies the target functions of source code. Given multi-
ple problems with detailed descriptions and the corresponding
candidate source code, the trained model will identify the
problem that the code is trying to solve. Two recently released
datasets, Java250 and Python800 [4], are used. Java250 and
Python800 have 250 and 800 problems, respectively,

Bug detection is to determine whether a piece of code contains
bugs, which is most often considered as a binary classification
problem. Refactory [3] and CodRepl [23], two real-world
datasets designed for bug repair, are used in our study.
Authorship attribution involves identifying the writer of a
given code fragment by inferring the characteristics of pro-
grammers from their published source code, which is crucial
for granting credit for a programmer’s contribution and is
also helpful for detecting plagiarism. We use the dataset from
Google Code Jam (GCJ) provided by Yang et al. [24].
Clone detection aims to check whether a code pair is seman-
tically identical or not, which helps prevent bug propagation
and makes software maintenance easier. We use the widely
used clone detection benchmark dataset BigCloneBench [2].
Note that Mixup and its variants are not suitable for this task
since its input is code pairs.

5.3 Models

There are two paradigms for code learning, 1) using task-
specific programming language (PL) models and 2) using pre-
trained PL. models.

e Code learning with task-specific PL models. This is a
simple type of code learning where a code model is
initialized randomly for a specific task and is trained
using a task-related dataset from scratch. Generally, the
trained models are lighter than the models using pre-
trained PL models (e.g., 103 MB for BagofToken models
vs. 487,737 MB for GraphCodeBERT models, as reported
in our experiment) and can be deployed in machines with
low computation resources.

Code learning with pre-trained PL models. Different from
task-specific models, pre-trained models are trained on a
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broad set of unlabeled data and can be used for a wide
range of downstream tasks with minimal fine-tuning. Due
to its large input volume, pre-trained models usually have
better accuracy and higher generalization ability [25].
First, pre-trained PL embedding models are trained using
multi-language datasets, e.g., Java, C++, and Python.
Then, given a dataset that targets a specific downstream
task, such as code clone detection, we fine-tune the pre-
trained model accordingly and produce the final model.
We prepare four types of DNN models for each dataset,
including pre-trained PL models and models trained from
scratch.

e Models trained from scratch. Two types of models
that need to be trained from scratch are studied, FNN
(BagofToken) [4] and CNN (SeqofToken) [4]. FNN
(BagofToken) is a basic mode type that only contains
dense layers. CNN (SeqofToken) consists of both dense
layers and convolutional layers.

o Pre-trained models. Besides, following the existing
work [24], two well-known pre-trained models, Code-
BERT [6] and GraphCodeBERT [5], are also considered
in our study. CodeBERT is a bimodal model trained by
using data from multiple programming languages, such as
C, C++, Java, and natural languages. It follows the same
spirit as BERT and treats programs as sequences during
pre-training. To consider the semantic-level structure of
programs, GraphCodeBERT adds data-flow information
to the training data that can produce a more precise code
representation. Notably, for pre-trained models, we fine-
tune all the layers (including the encoder and decoder) in
the models for downstream tasks.

5.4 Evaluation metrics

We evaluate the performance of trained DNN models from
clean accuracy, which is a commonly used indicator for the
quality of DNN models, measured by the following metric:

Accuracy is a basic metric that calculates the % of correctly
classified data over the entire test set. Clean accuracy means
the accuracy of models on the original test data. These data
generally follow the same data distribution as the training data.

5.5 Implementation

The implementation of all the data augmentation methods is
based on pure Python and the Numpy package, which makes
it easy to extend this study to support more techniques in the
future. Moreover, we also provide a code refactoring generator,
including 18 different code refactoring methods that sup-
port both Java and Python languages. The models, including
BagOfToken and SeqOfToken, are built using TensorFlow2.3
and Keras2.4.3 frameworks. CodeBERT and GraphCodeBERT
are built using PyTorch1.6.0. We set the training epoch to 50
for the above four models. For the Mixup ratio that is set in
augmenting training data, o = 0.1 is our default setting. To
alleviate overfitting, we adopt early stopping with patience 20.
To lessen the impact of randomness, we train each model five
times and report the average results with standard deviation.



TABLE 11
ACCURACY 7T (AVERAGE = STANDARD DEVIATION, %) OF BAGOFTOKEN,
SEQOFTOKEN, CODEBERT AND GRAPHCODEBERT. NO AUG
(BASELINE): WITHOUT DATA AUGMENTATION. BEST RESULTS ARE
HIGHLIGHTED IN GRAY.

Model DA method Java250 Refactory GCJ BigCloneBench
No Aug 71.24 £ 0.04 85.15+0.12 27.82 +0.14 85.23+ 0.34
WordMixup ~ 73.12 £ 0.01 | 86.46 £ 0.28 28.43 + 0.25 -
SenMixup 7533 £0.02 8542 +0.31 2923 + 0.22 -
Refactor 68.95 +0.03 8503 +0.14 2643 £0.12 85.54+ 0.42
BagofToken SR 70.06 £ 0.05 8191 +£0.23 2723 +0.21 85.45+ 0.39
RI 71.63 £ 0.03 85.81 £0.12 27.83 + 0.33 86.28+ 0.51
RS 7177 £0.02 8633 £0.11 2812+ 0.24 86.48+ 0.31
RD 71.13 £0.05 85.68 £0.12 2839 + 0.26 86.87+ 0.44
BT 70.86 + 0.02  73.96 + 0.16 2598 + 0.21 85.65+ 0.36
No Aug 86.61 £0.05 8555+0.13 38.67 £0.12 90.69 + 0.25
WordMixup 9442 + 0.02 87.51 £0.22 3898 + 0.36 -
SenMixup 9535 £0.12  90.02 £ 0.27 39.34 + 0.31 -
Refactor 93.19 £0.28 8549 +0.16 38.04 +0.24 91.14 £ 0.39
SeqofToken SR 9333 +0.35 81.64 £0.13 38.11 £ 0.21 91.23 + 0.41
RI 9449 £ 0.16 87.11 £0.22 38.54 + 0.33 91.09 + 0.36
RS 93.47 £0.22 81.81 £0.24 38.87 £0.23 92.67 + 0.31
RD 94.25 £ 0.31 84.64 £0.13 38.75 £ 0.21 92.34 £ 0.29
BT 93.81 £0.25 81.38 +£0.32 36.56 + 0.22 90.86 + 0.54
No Aug 96.39 £ 0.03 9622 +0.11 9098 +0.14  96.89 + 0.19
WordMixup 9631 £ 0.04 96.16 £ 0.12 91.34 £ 0.24 -
SenMixup 96.56 = 0.02 £ 96.99 £ 0.24 92.16 + 0.29 -
Refactor 96.42 £ 0.05 9594 £0.12 91.73 + 0.17 96.95 + 0.29
CodeBERT SR 96.33 £ 0.02 96.69 + 0.14  70.68 + 0.08 96.98 + 0.17
RI 9631 £0.06 9645 +0.12 59.89 +0.34 = 97.31 + 0.31
RS 96.47 £ 0.04 96.71 £ 0.13 = 93.23 + 0.09 96.99 + 0.18
RD 96.58 £ 0.03 9645 +0.15 76.99 £ 0.11 97.01 £ 0.37
BT 96.21 £0.02 9433 +£0.21 8271 +0.12 97.02 + 0.19
No Aug 96.47 £ 0.13  96.82 £ 0.14 9398 + 0.12 96.85 + 0.15
WordMixup 96.23 + 0.05 96.18 £ 0.24 93.67 + 0.23 -
SenMixup 96.52 £ 0.09 96.46 £ 0.21 94.51 + 0.09 -
Refactor 96.56 £ 0.12 9551 £0.26 91.73 £ 0.14 97.08 £ 0.21
GraphCodeBERT SR 96.54 £ 0.11 95.54 £ 0.28 89.47 + 0.19 97.09 + 0.16
RI 96.58 £ 0.04 94.56 + 0.31 80.45 + 0.23 97.32 £ 0.36
RS 96.49 £ 0.02 1 9791 £ 0.19 9474 + 0.12 97.52 £ 0.11
RD 96.69 £ 0.21 96.51 £0.18 91.73 £ 0.21 97.18 £ 0.28
BT 96.55 £ 0.18 9598 + 0.32 80.45 + 0.24 97.12 £ 0.18

We conduct all experiments on a server with 4 GPUs of
NVIDIA RTX A6000.

6. EVALUATION RESULTS

Due to page limitations, we report the results of one dataset per
task, specifically, Java250 for problem classification, Refactory
for bug detection, GCJ for authorship attribution, and Big-
CloneBEnch for clone detection.

6.1 RQI: Can existing data augmentation methods produce
accurate code models?

As shown in Table II, SenMixup achieves the best performance
in 6/12 cases. Surprisingly, in most cases (8/16), the code
refactoring method can not improve the accuracy of models
compared to No Aug. For SeqofToken models, again, Sen-
Mixup outperforms No Aug with accuracy improvements by up
to 8.74% and 4.63% on average, and Refactor with accuracy
improvements by up to 4.53% and 2.66% on average. The
results recommend choosing SenMixup for traditional DNN
models (e.g., FNN, CNN) to solve code classification tasks.

Moving to pre-trained PL models, first of all, we observe that
compared to the results of the above two types of models, Sen-
Mixup is not sufficient to improve the accuracy of pre-trained
models (only a maximum of 1.18% accuracy improvement).
By contrast, data augmentation methods that slightly break
the syntax of source code, such as RS, are more effective
and have a clear improvement (by up to 2.25%) compared
to No Aug, and (by up to 3.01%) compared to Refactor. In
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GraphCodeBERT, RS achieves the best accuracy improvement
in three (out of four) datasets. However, even though SenMixup
and RS achieve relatively better results than other methods, our
statistical analysis 7-Test and Wilcoxon signed-rank test found
that their advantage is not significant; specifically, only in two
out of 28 cases, the p-values are less than 0.05. This finding
indicates that proposing a more powerful data augmentation
method for code learning is a promising direction.

On the other hand, we investigate the convergence speed of
models using different data augmentation methods. Fig. 4
depicts the results of training logs. From the results, we
find that similar to findings that come from analyzing the
final accuracy of models, there are two methods that have
clearly better performance than others, SenMixup and RS. This
indicates that, with limited computation budgets, these two
methods are also recommended for practical use.

Answer to RQ1: Data augmentation methods that
linearly mix the code embedding, especially SenMixup,
are effective in enhancing model performance. Sur-
prisingly, the data augmentation method that slightly
breaks the syntax rules achieves the highest accuracy
boost in pre-trained PL models.

6.2 RQ2: How does data volume affect the effectiveness of
data augmentation methods?

Data augmentation methods are used to enrich the size and
also the diversity of training data, especially in the shortage
of labeled training data. Therefore, it is necessary to explore
whether data augmentation methods can be still effective
in improving the accuracy of DNN models when the size
of training data is rather small. In this RQ, we keep only
10%, 5%, 3%, and 1% of training data (for the authorship
attribution task, we keep 10% and 50% of training data since
the size of original training data is relatively small) and repeat
the experiments conducted in Section 6-A. We choose two
mainstream pre-trained PL models for our study. Here, we
only report the results of CodeBERT models.

Table III and the left part of Table IV present the results
of clean accuracy. For problem classification tasks (Java250),
we can see that only in one case, CodeBERT (1%), data
augmentation can improve the accuracy significantly (by up
to 5.64% accuracy improvement). A similar phenomenon
also happens in the clone detection task, the accuracy im-
provements produced by data augmentation are negligible.
In contrast, for the bug detection task, there is a method
(SenMixup) that can always significantly improve the accuracy
of models with a margin from 3.32% to 12.92%. Interestingly,
two noising-based methods, SR and R/, that perform well when
using the entire training data fail to produce accurate models
after reducing the size of the training data. For example, in
Java250-CodeBERT (1%), SR- and RI-produced models only
have 37.06% and 27.03% accuracy, while the baseline method
(No Aug) has 49.62%. In conclusion, SenMixup is still the
recommended method that has relatively better results than
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Figure 4. Training log of models (SeqofToken and GraphCodeBERT) in Java250, Refactory, GCJ, and BigCloneBench.

TABLE III

ACCURACY T (AVERAGE =+ STANDARD DEVIATION, %) OF CODEBERT

USING #% TRAINING DATA. NO AUG (BASELINE): WITHOUT DATA
AUGMENTATION. BEST RESULTS ARE HIGHLIGHTED IN GRAY.

Model DA method Java250 Refactory  BigCloneBench
No Aug 9228 £0.03 8251 +0.18  96.58 + 0.15
WordMix 91.33 £ 0.04 83.89 +0.13 -
SenMixup 92.52 £ 0.07 85.83 +£0.12 -

Refactor 9236 +0.05 8558 +0.17 9672 + 033
Cofle(fjf)RT SR 92.09 + 0.06 81.81 £0.13  96.89 = 0.27
RI 91.91 £ 0.02 79.67 +0.15 9681 +0.19
RS 9239 +0.06 8582 +0.19 [797.06' £ 0.18
RD 9241 £0.09 84.87 £0.14  96.66 + 0.21
BT 91.01 + 0.02 [87.23%£0.167 96.93 + 0.15
No Aug 8837 £0.13 8132026 7924 % 051
WordMix 8852 + 027 8743 + 025 -
SenMixup 88.14 + 0.18 88.89 + 0.28 -
Refactor 87.94 £ 0.15 7683 035  78.99 + 0.55
COd;gERT SR 86.14 £ 0,12 8441024  78.58 + 0.69
OB 8577 £ 0.14 7991 +0.43  79.02 + 025
RS 88.55+0.16 87.23+027  80.02 + 0.65
RD 88,75 £0.15 77.31 +0.16 | 80.06 £ 0.86
BT 85.18  0.13 900720227 80.04 + 0.45
No Aug 7815+ 0.13 7589 + 023 78.67 + 0.44
WordMix ~ 78.89 + 025 87.33 + 0.32 -
SenMixup  [79:19'% 012" "88:81°% 043 -
Refactor 74.62 £0.15 8629 036  79.53 + 0.89
C"‘:g‘;ﬁ” SR 7503012 8441030  79.54 £ 0.67
RI 73.05 +0.14 8771 +0.44  79.39 + 039
RS 7759 + 0.11 81.81  0.31 7977 2022
RD 7818 £ 0.12 76.12+ 024  79.19 % 0.39
BT 73.01 £0.16 88.65+033  79.67 + 037
No Aug 2962 %0.14 7683 =021 7202 £ 0.65
WordMix 5321 026 87.11 + 0.44 -
SenMixup | 5526028 88.12 + 0.41 .
Refactor 3459 026 7211053  72.03 + 0.69
CO‘ET%RT SR 37.06 + 035 82.74 £ 043 | 73430588
RI 27.03 + 049 88.18 + 0.54  72.67 % 0.16
RS 4953 £ 038 8298 +0.52 7251 + 0.38
RD 4978 £ 033 76.84 + 044 7247 + 0.89
BT 36.68 + 0.28 [8842% 055 72.55 + 0.59

TABLE IV
ACCURACY T (AVERAGE = STANDARD DEVIATION, %) OF CODEBERT
USING #% TRAINING DATA, RESPECTIVELY, ON TEST DATA. NO AUG
(BASELINE): WITHOUT DATA AUGMENTATION. DATASET: GCJ.

Test accuracy

DA method 10% 50%

No Aug 40.69 £ 0.11 86.47 £ 0.15
WordMix 42.14 £2.01 84.21 +£0.23
SenMixup 4451 £ 1.31 86.98 = 0.31
Refactor 31.58 + 0.21 78.21 +£0.17
SR 7.52 +£0.15 57.89 + 0.09
RI 376 £ 0.13  22.56 £ 0.15
RS 41.67 £0.17 @ 86.98 + 0.19
RD 12.78 £ 0.24 55.64 + 0.14
BT 23.32 £ 0.27 69.17 £ 0.06

others even though its advantage is not significant (p-values
are greater than 0.05) according to our statistical analysis.
Then, we check the convergence speed of models using
different data augmentation methods. Fig. 5 represents the
training logs of CodeBERT (10%) models. From the results,
we can see that when data augmentation methods are used, the
convergence speed of models is easily affected by a drop in the
data scale. For instance, compared to the results of model train-
ing using the entire dataset, after 10 epochs, GCJ-CodeBERT
has more significant accuracy improvement with data augmen-
tation methods, i.e., RS, SenMixup, and WordMixup. Besides,
we can find all data augmentation methods effectively improve
the performance of accuracy in BigCloneBench-CodeBERT
compared to No Aug after 20 epochs. This can be beneficial
for us to select more effective data augmentation methods to
reduce the time (computation budget) cost of models when the
training data is in a very limited situation.
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Figure 5. Training log of CodeBERT using 10% training data.

Answer to RQ2: When training data is scarce, Sen-
Mixup is the best choice which outperforms No Aug
by up to 12.92% in CodeBERT in terms of accuracy.
On the contrary, the syntax-preserved method Refactor
performs surprisingly worse, e.g., in 8 (out of 14)
cases, Refactor harms the accuracy of models com-
pared to No Aug.

.

7. DISCUSSIONS AND THREATS TO VALIDITY
7.1 Is data augmentation necessary for source code learning?

First, the most important question is whether it is necessary
to use data augmentation when preparing code models. From
our empirical study, the answer is yes. In the case of using a
suitable data augmentation method, e.g., SenMixup, the trained
models have higher accuracy (by up to 12.92%) than the
models without using data augmentation. However, the results
also demonstrate that when using pre-trained PL models,
though data augmentation can still improve the performance
of the model, the improvement is not significant compared
to the case without pre-trained PL embeddings. The reason
could be that, essentially, pre-training already plays the role
of data augmentation that enhances the whole process of model
training, and consequently, other data augmentation techniques
become not as useful as they are in the cases without pre-
training. An in-depth analysis of this phenomenon will be an
interesting future research direction.

7.2 Is preserving syntax rules necessary in source code-based
data augmentation?

The previous research has shown that, for natural language, al-
though the semantics of text data is sensitive to their syntactic
change, it could remain readable to humans [16] and valid as
additional training data if the change happens within a limited
range that does not break the original relations between the
text data and their labels. Indeed, that is why noising-based
data augmentation methods, such as RI and RS (see Section 3),
are still very useful in NLP, as shown by the recent study [26].
In the context of source code learning, our experimental results
suggest a similar conclusion, namely, even though some data
augmentation methods can produce training data that slightly
break the syntax of the source code, these data are still useful
in improving the quality of training in source code learning.
Indeed, as reported by our experiments, the pre-trained PL

models using the RS method can achieve higher accuracy (by
up to 14.94%) than the models using the baseline Refactor
method.

7.3 Threats to Validity

The internal threat to validity comes from the implementation
of standard training and data augmentation methods. The code
of model training, SenMixup, and WordMixup methods are
from the official projects. The code refactoring methods for
the Java language come from the existing works [21], [22],
and we adapt the implementation to the Python language.
The external threats to validity lie in the selected code-
related tasks, datasets, DNNs, and data augmentation methods.
We consider four different code-classification tasks, including
problem classification, bug detection, authorship attribution,
and clone detection in our study, a total of six datasets for the
above tasks. Especially two popular programming languages
in the software community (Java and Python) are included. We
apply four types of DNN models, including two mainstream
pre-trained PL. models. For data augmentation methods from
code, code refactoring methods cover the most common ones
in the literature. Data augmentation methods of NLP come
from the most classic method, which is comprehensively
adopted from the number of citations of papers.

The construct threats to validity mainly come from the pa-
rameters, randomness, and evaluation measures. We follow
the original recommendation of Mixup to set its parameters.
The parameters of data augmentation methods from NLP also
follow the original release. We repeat each experiment five
times and report the average results to reduce the influence of
randomness.

8. RELATED WORK

We review related work about data augmentation for source
code learning and empirical study on source code learning.

8.1 Data augmentation for source code learning

Data augmentation has achieved enormous success in the
machine learning field [11]. Inspired by its success, recently
researchers devoted considerable effort to leveraging the data
augmentation technique in big code tasks to improve the per-
formance of code models in terms of accuracy and robustness.
Adversarial training [27], which produces a set of adversarial
examples to the training data, has been studied as the data
augmentation method in code learning. Zhang et al. [28]
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proposed a code data augmentation method that employs
the metropolis-Hastings modifier (MHM) algorithm [29] to
improve the capability of deep comment generation models.
Mi et al. [30] generated the additional data from Auxiliary
Classifier generative adversarial networks (GANSs). Besides,
as a program transformation method that is specially designed
for code, code refactoring has been used as a mainstream code
data augmentation method. Yu et al. [9] designed program
transformation rules for Java and evaluated the effectiveness
of using these program transformations as code data augmen-
tation in three big code-related tasks. Allamanis et al. [12]
used four simple code rewrite rules as code data augmentation
methods for improving the generalization of the code model.
Compared to the above works, our study is the first one that
assesses the effectiveness of two types of data augmentation
methods for code learning, namely, source code and text data.

8.2 Empirical studies on source code learning

Recently, many works conducted empirical studies to explore
the topic of ML4Code. Chirkova er al. [31] conducted a
thorough empirical study to evaluate the capabilities of using
Transformer to solve three downstream tasks related to code
learning, including code completion, function naming, and
bug fixing. Zhang et al. [32] empirically analyzed current
testing and debugging practices for machine learning pro-
grams. They revealed that the interaction with the platform
execution environments could easily cause machine learning
program failures, moreover, current debugging is insufficient
to locate the fault in machine learning code well. This work
is useful for programmers to improve the quality of the
source code of machine learning. Yan et al. [33] conducted a
comprehensive empirical study on code search using machine
techniques. Their empirical evaluation results revealed that
machine learning techniques are more effective for queries on
reusing code. More recently, Hu et al. [25] empirically studied
the distribution shift problem of code learning and defined five
types of shift for code data.

Different from the existing empirical studies, our work investi-
gates data augmentation on source code classification that has
rarely been studied to date.

9. CONCLUSIONS AND FUTURE WORK

Our empirical study highlights the importance of data aug-
mentation in code learning and provides insights into the
effectiveness of various augmentation methods for different
downstream tasks and DNN models. Specifically, linear in-
terpolation methods such as SenMixup and Manifold-Mixup
are found to be effective in improving the accuracy of most
DNNs, except for pre-trained programming language (PL)
models. Methods like random deletion (RD) and random
swap (RS) that slightly break the syntax of source code are
particularly effective for pre-trained PL models. Particularly,
linear interpolation methods can handle the situation when the
training data is limited. Moreover, in light of these findings,
our study paves the way for further improving the effectiveness
of data augmentation in code-related tasks, with the ultimate
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goal of enhancing program understanding and accelerating
software development.
In future work, we plan to:

o Extend our study to explore how data augmentation
methods affect non-classification code tasks, e.g., code
summarization and code generation.

o Study how to use data augmentation methods to help fine-
tune large language models (e.g., LLaMA) for code tasks.
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