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Abstract—Mobile application performance is crucial for en-
hancing product competitiveness in the market. As mobile
application development grows more intricate, automated per-
formance testing has become increasingly challenging. Most
testing tools rely on source code or binary files, which limits
the evaluated scenarios and requires testers to possess coding
skills. This paper presents a full-process intelligent speed
performance testing tool, SmartPerf, from automated test case
recording to analysis report output. SmartPerf simulates user
behaviors to record cross-platform test scripts. Subsequently,
the tool segments the recorded screen data into frames dur-
ing replaying, and the general transition point recognition
automatically identifies the first and last frames. SmartPerf
also supports uploading long screen recording videos and
determines each transition point’s first and last frames in
continuous multiple actions switching through the temporal
convolution segmentation. This paper introduces the user-
friendly evaluation metric, mAcc@5. The results indicate an
accuracy of 0.9 for general transition point recognition in
single actions and 0.76 for temporal convolution segmentation
in continuous multiple actions, significantly reducing labor
costs. The conclusions given by the tool reports reflect the
performance quality effectively, consistent with the market
reality.
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1. INTRODUCTION

Nowadays, mobile applications have been widely used in all
walks of life [1], such as search, online shopping, reading, etc.
People often ignore the performance of mobile applications,
which generally includes application launch time, CPU usage,
fluency, and operation response time. The speed performance
focus on the interaction speed between users and Apps, that is,
the feedback response speed of Apps to a user’s input signal.
Nielsen [2] proposed that speed must be the overwhelming cri-
terion for user experience design at an earlier time. The quality
of speed performance is directly related to user experience,
affecting user retention and product revenue [3]. Since mobile
application technologies have become increasingly intricate,
On the one hand, the fragmentation of mobile applications,
such as cross-system, cross-device, and hybrid applications, in-
creases the cost of automated performance testing. Some front-
end automated tools like Appium, which integrate traditional
frameworks, rely on scripts like Xpath or ID to locate widgets,
which are relatively unstable. Therefore, tools like Sikuli [4]
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and Airtest [5] based on visual solutions have emerged. LIRAT
[6] utilizes layout and image recognition to achieve cross-
platform record and replay. Robotic arms to operate real
devices is also a popular front-end automated testing solution
[71[8][9], where non-invasive and fully automated simulation
of user behaviors achieves recording and replaying. On the
other hand, it becomes complex and dynamic for user interface
display and interaction. Technologies such as JavaScript and
template engines implement front-end page chunking and
dynamic updating through asynchronous requests, callback
functions, etc., to improve the response speed of the program,
which brings challenges to performance testing.
action 3 start

action1end action2 start action2 end action 3 end

action 1 start

Figure 1. An Example: Continuous Multiple Actions for Baidu App

Speed performance testing can play a crucial role in preventing
experience degradation, verifying performance improvements,
and gaining insights into the competitive position of industry
products. Previously, testers typically conducted performance
testing at the system test level. However, there have been
suggestions to shift performance testing to an earlier stage,
such as the unit test level, to enhance the assurance of a smooth
and problem-free process [10]. An automated evaluation tool
that efficiently and accurately completes the evaluation loop
while delivering credible evaluation reports is crucial for
enhancing evaluation efficiency.

This article introduces SmartPerf, an automated performance
testing tool based on real devices. The automated recording
and replaying module with image recognition can record
and replay test cases with one click. SmartPerf records each
operation’s automatic replaying process video and calibrates
the first and last frames through a general transition point
algorithm after splitting frames. Earlier, Jovic et al. [11] pro-
posed the necessity of speed performance testing from the GUI
perspective. The back-end scripting method greatly differs
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from the user’s perception, where the triggering response and
termination of events cannot correspond one-to-one with the
start and end of the front-end page. Therefore, using the visual
method to determine the transition point of the page is closer
to the user’s perception. In addition, driven by business needs,
SmartPerf also supports uploading long screen recording data
containing continuous multiple operations and automatically
performs speed performance analysis on the response time
of each action (see Figure 1). Replacing and measuring the
response time of each action separately with one screen
recording directly giving the response time of each action in
multiple operations greatly improves efficiency. In the report
stage, the evaluation results display a confidence interval, and
comparative conclusions on the merits and demerits are given
by recording the performance data of historical versions. The
challenges we need to solve are:

« How to efficiently and stably record and replay automated
test cases?

« How to efficiently determine the first and last frames be-
cause mobile application scenarios are diverse?

« How to conduct confidence assessment for speed perfor-
mance testing and provide users with credible reports?

2. RELATED WORK

There are two main approaches for speed performance testing:
those based on log points and those based on screen recording
analysis. The log point-based scheme [12] involves the inser-
tion of collection points at critical positions within the code,
followed by statistical analysis of the logged data to derive
speed metrics for the evaluation scenario. This approach offers
the advantages of being cost-effective and easy to implement,
as the results are generated through sampling and statistical
analysis of online log data, which closely reflects the code’s
actual running environment. However, it has limitations, as
it requires access to the source code and cannot be used
to evaluate competitive applications. In complex business
scenarios involving asynchronous data requests, inserting log
points at each stage to accurately capture relevant moments
during actual operations proves challenging. Moreover, to
prevent any adverse impact on the performance of the business
itself, simple data collection is often the primary choice, which
may not necessarily yield speed metrics closest to the user’s
perception.

Jovic et al. [10] proposed a method that involves capturing
event response times through logging, tracking latency infor-
mation for each GUI event, and utilizing cumulative latency
distribution to characterize the overall responsiveness of the
program. Another performance testing tool, AppSpeedXray
[13], adopts a different approach by recording test cases using
UI Automator and collecting data from binary files. It also
analyzes CPU utilization, loading time, rendering time, and
other pertinent metrics to generate a comprehensive perfor-
mance score for the application.

Visual solutions have been employed for speed analysis in
both industry and academia [14]. Stagesepx [15] proposes a
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solution by splitting input videos into frames, classifying the
stages, and automatically generating chart reports. It classifies
individual frames, such as stable pages, blank pages, and
loading status pages for cold start scenarios. If not recognized,
it is considered as another state. Essentially, it is a classifier
based on Support Vector Machine (SVM) and Histogram Of
Oriented Gradient (HOG) or Convolutional Neural Network
(CNN) classifier. One drawback of this classifier is that it
needs to utilize previous and subsequent frame data, leading
to discontinuous classification states, where the next state cat-
egory includes the previous state. Confidence interval analysis
result in a more accurate page transition time. Kim et al. [9]
proposed a scheme using a robot arm to automatically capture
video frames, using CNN to recognize page components and
page similarity to identify the first and last frames. They
utilize the “speed index” to evaluate the performance, which
calculates the average time for the visible parts of a page
to be displayed. The advantage is comprehensively judging
the user’s perception of page loading speed, unaffected by
a single indicator such as FMP, FP, etc. The disadvantage
is that it could be more intuitive for business people and
easier to explain. However, The above tasks lack identification
of solutions for continuous multi-action scenarios, and video
action segmentation technology is introduced to solve this
problem. CARL [16], the latest sequence contrastive learning
for action segmentation, encodes the frame-wise action and
then classifies each frame using classification networks. It is
suitable for short videos within 1000 frames and cannot adapt
to our long video scenarios.

Both methods first rely on automated UI testing tools like
Appium and Ul Automator to simplify the code writing or
enable simulators to display execution status. We propose
an automated performance testing tool to address the above
challenges, closing the loop of the testing life cycle.

3. METHODOLOGY

SmartPerf, a full-process intelligent speed performance testing
tool, mainly includes automated record and replay, speed
performance analysis, and confidence reports. The testing
tool is designed to prevent product deterioration and conduct
competitive benchmarking. The framework is shown in Figure
2.

3.1. Automated Record and Replay

SmartPerf connects local smartphones to complete the record-
ing of automated test cases such as click, swipe and reboot.
Record and analysis are performed on the PC side, reducing re-
source consumption on the recording phones through efficient
and streamlined driver modules. This paper is mainly about
speed performance analysis, and we will only briefly describe
the pre-execution automation without going into details.

It is challenging to address widgets in varying scenarios, and
our automated tool provides two locating modes: "attribute po-
sitioning” and “visual positioning”. We parse and reconstruct
the page source, employing “visual positioning” to locate
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Figure 2. The Framework of SmartPerf: Automated Speed Performance Test from Visual Perspective

images and key icons using CNN. We group the pages through
line detection and utilize OCR to model the pages.
Throughout the automated execution, for Android, we utilize
AutomatorX (ATX) to gather widget information, including
coordinate, ID, text, etc., and employ Android Debug Bridge
(ADB) for automated operations. For iOS, communication
with mobile devices is established through WebDriverAgen-
tRunner (WDA). To minimize the impact on the resource
consumption of hosts, we opt for tidevice to initiate WDA.
Finally, for obtaining high frame rate videos, we utilize scrapy
for screen recording and ffmpeg [17] for frames extraction
on the Android platform. On the iOS platform, we utilize
the optimized iOS-minicap to obtain image streams and the
corresponding timestamps.

3.2. Speed Performance Analysis

Efficiently calibrating the first and last frames becomes a
crucial task. Motivated by real business scenarios, we present
two solutions. The first is the general transition recognition,
capable of condensing video frames into several transition
points, which indicate the page changes. Users can readily
identify the first and last frames from these transition points.
This method exhibits high accuracy during the switch between
individual operations and does not necessitate data training

for coarse-grained annotation, making it applicable across all
scenarios. The second is an action segmentation scheme based
on temporal convolution networks, where multiple actions are
delineated, facilitating the identification of the first and last
frames of each action. If GTR is used for multi-action scenes,
such as a 1200-frame video with three consecutive actions
generating 23 transition points, manual calibration would be
troublesome. We strive to identify a universal method to extract
the transition points for each action.

General Transition Point Recognition. The essence of the
first and last frame recognition lies in determining the state
changes of page transitions. Typically, a page transition under-
goes multiple state changes, and different businesses may have
diverse criteria for identifying the last frame, some requiring
FMP, others FP, or 80% of the similarity with a stable page.
This highly customized approach complicates the task for
evaluators and reduces availability. A feasible generalization
approach is to provide the positions of each state change and
allow users to confirm afterward.

Calculating the similarity between consecutive frames and
employing binary search to rapidly obtain the labels for each
page, we can adjust the similarity threshold to obtain different
numbers of state changes. Usually, the similarity threshold is
fixed, and a higher threshold results in fewer state changes,
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while a lower threshold leads to more. Finally, merging is
performed to retain only one state change if the distance
between adjacent state changes exceeds z frames. Through
this process, a sequence of 280 frames can be compressed
into six state changes, which can be quickly located using
tool shortcuts. Cross-frame calibration enables the first frame
determination in Android scenarios, and OCR can assist in
identifying cross-frames with an accuracy approaching 100%.
Temporal Action Segmentation. Screen recording videos are
split into frames at 60 fps, while common video frame rates
are 30 fps or even 15 fps. Speed performance testing relies
on a higher frame rate to reduce speed evaluation errors,
which also poses challenges for subsequent first and last frame
recognition.

GTR is used for initial pre-annotation and later refined by the
annotator. The annotation process involves identifying the first
and last indices of each action, requiring the preparation of 60
videos for each task. For video embeddings, we extract RGB
features, which have shown satisfactory results in experiments,
avoiding the time-consuming optical flow extraction. The 13D
model [19] inflates 2D convolutions into 3D convolutions,
thereby incorporating temporal information and directly utiliz-
ing common 2D networks. We adopt the Inception network as
a backbone, maintaining the overall structure unchanged. The
I3D model is pre-trained on ImageNet for feature extraction,
skipping the feature training step. The input size is (224, 224),
and the dimension of features is (N, 1024,T"), where T means
the length of each sequence and N means the number of
videos.

MS-TCN++ [18] is utilized to implement action segmentation,
which infers the action category for each frame in a video. It
mainly relies on temporal convolution networks to aggregate
features, which utilizes causal convolution [20] to obtain more
historical information to capture longer-range dependencies
and increase the receptive field through dilated convolution,
eventually achieving frame-level classification of videos. To
further improve the classification effect, MS-TCN++ utilizes
a multi-stage TCN [20] to further fine-tune the classification
results and increase the accuracy of action segmentation.
Since the video sequences are continuous, cross-entropy loss
can easily lead to over-classification or incoherent results.
Therefore, MS-TCN++ introduces an additional loss L1_ ysE
to smooth the results and improve coherence (see Eq. 1, 2 and
3).
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Where T is the frame length of the video, C is the number of
classes, and y; . is the predicted confidence score of class c.
If the behavior classification difference between the adjacent
frames is larger, it avoids sudden changes in the classification
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results on the time axis, thereby achieving continuity of
classification at each stage.

In other words, this additional loss penalizes large differences
in predicted labels between adjacent frames. By minimizing
this loss, the model is encouraged to output smooth label
predictions over time and avoid sudden label changes between
frames.

3.3. Confidence Reports

Speed performance testing is affected by many factors, such
as network, time period, etc. To minimize errors, we adopt
round-robin evaluation for the tested scenarios to obtain groups
of the first and last frame verification data. On this basis, to
effectively eliminate accidental errors, the Grubbs criterion,
which performs better for small samples and is internationally
recommended, is selected. Suspicious values are calculated by
arranging the first and last frame verification data, and the
calculation formula is as Eq. 4.

|z; — 7|
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where T is the mean value of the test data, and s is the standard
deviation. We utilize the Grubbs table to determine if the
calculated z-score (G;) exceeds the critical value G, at a given
significance level a. Suppose G; > G, the corresponding
data is considered as an outlier and removed. This process is
repeated until there are no more outlier data points, resulting
in D, without any abnormal values.

Since we cannot obtain the results of all users under the
evaluation scenario, we further obtain the interval estimation of
unknown parameters based on sample statistics of D,, namely
confidence interval, as Eq. 5.
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Where n is the number of the test data, p and o are the
mean and standard deviation of the sample data. Therefore,
(1w — 1.96%# + 1.96%) is the confidence interval of the
unknown parameter M. The confidence interval can quantify
the uncertainty of estimation and provide a rough heuristic
approach that the probability of the true mean being greater
than the obtained upper limit is about 2.5% (if the confidence
level is 95%, « is 0.05 and the 2, /7 is 1.96 from the confidence
interval table). In order to visualize the confidence interval
and to provide a clear comparison with other applications, the
reports of SmartPerf introduce the box plot. The width of the
box reflects the size of the sample, in which the larger the
sample size, the wider the box.

4. EVALUATION

Assuming the stability of the record and replay module, which
provides reliable screen recording and frame data, we assessed
the accuracy and applicability of the proposed first and last
frame calibration scheme and the effectiveness of the reports.



4.1. Accuracy of General Transition Point Recognition

We collected speed performance testing requirements from
the industry, including 24 different testing tasks covering six
applications. Each scenario was executed 70 times, with two
different smartphones selected from both iOS and Android.
During the replay process, it is more appropriate to confirm
the first frame utilizing cross-frame for Android devices.

We analyzed the correlation between algorithm accuracy and
manual effort. Without using the algorithm, manual calibration
for a single scenario took 30 seconds. However, achieving
100% calibration accuracy with 15 frames further reduced the
manual effort to 20 seconds. Additionally, using five frames
with 90% accuracy only took 10 seconds for screen recording
calibration. Furthermore, if there was a 95% accuracy with 0
frame difference, no manual calibration was needed, achieving
full automation. Based on this analysis, we computed the com-
pressed accuracy metric mAcc@5, considering any transition
point hit within a range of 5 frames as a positive hit.

From Table I and Table II, the average accuracy with
mAcc@3=0.814 and mAcc@5=0.9 in 24 scenarios could
achieve a 66% reduction in labor cost.

TABLE 1
ACCURACY OF GTR ON ANDROID

Device Scene ID mAcc@3 mAcc@5
Device0 1 0.56 1
Device0 2 0.9 1
Device0 3 091 0.93
Device0 4 0.84 0.95
Device0 5 0.95 1
Device0 6 0.97 1
Device( 7 0.81 1
Device0 8 0.92 0.96
Devicel 9 0.9 1
Devicel 10 0.66 1
Devicel 11 0.88 1
Devicel 12 0.38 0.47
Devicel 13 1 1
Devicel 14 0.26 0.38
Devicel 15 0.95 0.95
Devicel 16 0.61 0.88

4.2. Accuracy of Temporal Action Segmentation

We obtained screen recording data from crowdsourced data
suppliers, specifically capturing the process of the three appli-
cations from cold start, through the search input, to navigating
to search results page. The dataset consists of 300 video
recordings with 100 pieces per App, covered 7 iOS devices,
8 different OS versions, and network conditions including
WiFi, 4G, and 5G. Each video recording includes the first and
last frames of three different actions, representing six distinct
action categories. On average, each video is approximately 20
seconds long.

TABLE II
ACCURACY OF GTR oN 10S

Device Scene ID mAcc@3 mAcc@5
Device3 17 0.68 0.76
Device3 18 1 1
Device3 19 0.57 0.61
Device3 20 0.96 0.96
Device3 21 0.75 0.9
Device3 22 0.84 0.9
Device4 23 0.98 1
Device4 24 1 1

TABLE 1II

ACCURACY OF ACITON SEGMENTATION
Application F1@50 Edit Acc mAcc@5

APP1 83.6 89.7 91.01 70.6
APP2 97.4 98.0 97.7 84.0
APP3 81.9 90.8 92.5 73.9

To evaluate the accuracy of action segmentation, we chose 3
metrics commonly used in the industry: F1-Score@50, edit
distance, and frame-wise accuracy (ACC). Since the uneven
distribution of actions, for example, the search input action
covers a longer period, while other action inputs are shorter
(see in Figure 3), leading to metrics being more heavily
influenced by long actions and hardly reflecting the effects
of each action fairly. Moreover, we care about the accuracy of
each segmentation boundary, and we introduce the mAcc@5,
which is the average boundary accuracy of each category.

Table III and Figure 3 show the performance on APP2 is
better, while the performance on APP1 scenarios is worse.
This is because the loading of APP1 involves more complex
page changes, leading to larger annotation errors and worse
learning effects. The average accuracy of mAcc@5 is 0.76.
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Figure 3. Segmentation Results with TCN of Three Apps in Multi Actions
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Figure 4. An Example: Box-and-whisker Plot of Cold Start Speed on iPhonel3

The computation of video embedding is more time-consuming,
and the inference of MS-TCN++ on a single video takes about
100ms.

4.3. Effectiveness of Confidence Reports

The expectation of cold start speed proposed by Apple at

WWDC 2019 indicates that the pre-main stage is completed

within 100ms, the loading of the first frame is realized within

400ms, and the homepage display is realized within 600m:s.

We conducted speed performance testing to evaluate the cold

start time of four Apps. The device was selected in high,

medium, and low types, respectively: iPhone 6SP, iPhone XS

Max, and iPhone 13. The automated execution of SmartPerf

was five steps:

1) Close App to be tested

2) Wait 5s (ensure that the App is completely closed)

3) Click the App icon on the desktop

4) Wait 7s (wait for the homepage to finish rendering)

5) Close App

To ensure the validity of the execution results, we repeat the

above steps 70 times for each App. The first and last frames

of the execution scenario were as follows:

« First frame: the moment when the device takes an automated
click on the App icon.

o Last frame: the moment when the App homepage is fully
loaded and stabilized

TABLE IV
COLD START TIME OF APPS
Device Toutiao  Taobao Baidu Tiktok
iPhone 13 901ms 940ms  1067ms 3396ms
s iPhone XS Max 1710ms 1757ms 2326ms 3998ms
iPhone 6SP 3624ms  3822ms  5152ms  7908ms

As shown in Table IV, all four Apps failed to meet the
expected cold start time of 600ms set by WWDC. The box
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plot in Figure 4 shows the confidence interval of the cold-start
rendering speed of Apps on iPhone 13. sum is the percentage
of valid data, where the denominator is the amount of data that
was successfully executed and calibrated, and the numerator
is the amount of valid data after the removal of anomalous
data. The launch app stage of Tiktok and Taobao contains ads;
thus, the data dropped from 70 to around 40 after calibration.
Toutiao and Taobao start second on iPhone 13. However, the
cold-start rendering speed of the Baidu APP on iPhone 13
is around 1 second (according to the comparative analysis of
data on the market, and the evaluation data is consistent with
the log data on the market). TikTok cold-start rendering speed
on high-end devices reaches more than three seconds.

In the analysis reports, performance degradation is identified,
and the identified problematic areas are communicated to
the development team to investigate potential fluctuations.
Continuous monitoring of online performance data is con-
ducted. For example, it was discovered that the video replaying
speed of the iOS product lagged behind by more than 50%,
prompting adjustments to the replaying strategy in order to
catch up with competitors. In another example, small-scale
experiments in the visual search scenario demonstrated that
performance optimization led to an increase in page views.
After deployment, this increase in overall views was further
validated through comprehensive analysis.

5. CONCLUSION

This paper introduces two speed analysis algorithms. For
single transition actions, the first and last transition points
correspond to the first and last frames through general transi-
tion point recognition. GTR has been extensively used and
validated in the industry. For multiple continuous actions
in uploaded screen recording data, each action’s first and
last frames can be automatically determined according to
temporal action segmentation. With a dataset of 60 training
videos, the mAcc@5 on APP2 reached 0.84. In subsequent
tasks, we continuously train and learn the already calibrated



segmentation data, leading to further improvement in pre-
cision. Additionally, personalized operators are provided to
complement the GTR and meet diverse user needs.
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