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Abstract—Deep Reinforcement Learning (DRL) is critical in
modern Artificial Intelligence (AI), powering innovations from
gaming to autonomous vehicles. As DRL continues its rapid
ascent, ensuring its systems are both trustworthy and effective
is crucial. This research focuses on different DRL techniques
and the challenges faced in real-life scenarios. The paper
also describes various formal verification techniques and the
challenges related to their application. It sheds light on the
different frameworks and tools that can enhance the credibility
of systems. We performed an extensive literature survey to
present the existing methodologies, tools, and frameworks. The
analysis systematically reviews and categorizes various formal
verification techniques and frameworks employed in DRL.
The insights garnered from this study are anticipated to foster
an enriched understanding of the processes and contribute to
decision-making in Safety Critical Systems using DRL and
verification.
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1. INTRODUCTION

Al has greatly shifted from static decision-making models
to adaptive learning systems. A new era in which compu-
tational agents refined their behavior depending on rewards
and penalties was introduced by reinforcement learning. Deep
Reinforcement Learning was created due to the fusion of deep
learning methods and reinforcement learning (RL), signifi-
cantly boosting an agent’s capacity for comprehension and
interaction in complex circumstances. This innovation made
DRL appealing in various applications, especially in safety-
critical systems like healthcare, autonomous vehicles, and
robotics[1].

The dynamism and sophistication of DRL also usher in myriad
challenges. From output uncertainties to real-time decision-
making ambiguities, the complexities of DRL systems of-
ten cast shadows that can hide potential vulnerabilities [2].
However, formal verification can be our guide[8]. As this
review will explain, various verification strategies have been
developed and implemented to our help, making sure that DRL
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systems work with optimal reliability. The significance of this
lies in ensuring the accuracy of a model’s predictions and
ensuring that safety-critical systems, where inaccuracies can
lead to catastrophic consequences, operate faultlessly.

The Survey highlights the challenges faced using Deep
Reinforcement Learning and ensures decision-making. Some
tools and methods are introduced that are made just for this
purpose. Some issues might stop people from using these
tools everywhere. Understanding these issues is essential
because it tells us where more work is needed in DRL
research. This paper can inspire more research by highlighting
these problems and the missing pieces in current DRL checks.

Research Motivation: DRL has carved a significant niche in
robotics and healthcare, instigating advancements in robotic
cognition and operational efficiency. [3] Mentions how DRL
optimizes robotic control systems, empowering robots with en-
hanced decision-making and adaptability. As robots permeate
various sectors, the integration of DRL augments their ability
to maneuver complex, unpredictable environments. However,
an exigent issue - the escalating use of DRL in robots calls
for the need for robust regulatory measures[4]. Ensuring that
these advanced robotic systems operate within defined safety
and ethical parameters.

Despite the use of DRL in robotics, a wide gap exists in the
literature that systematically addresses the attendant challenges
and proposes comprehensive solutions. There is a need for
discussions about the practical, ethical, and safety challenges
of DRL in real-world applications that are relatively sparse[4].
On the other hand, formal verification emerges as a potential
tool to validate and assure the safety and performance of DRL
applications. Nevertheless, the incorporation of formal veri-
fication is riddled with complexities, including the dynamic
nature of DRL environments and the nuanced, multifaceted
challenges of ensuring exhaustive verification in such settings
[S].

This paper explores the landscape of deep reinforcement
learning and its formal verification, starting with a
foundational background in section 2. The research
methodology used to accumulate the contents this paper
highlights is mentioned in section 3. This sets the stage by



explaining the evolution and significance of DRL. The paper
then transitions to the techniques integral to DRL in section 4
and the importance of formal verification discussed in section
5. Highlighted next are the challenges inherent to RL/DRL
and the intricacies of its formal verification in section 6.
Section 7 gives an overview of current tools and frameworks
for DRL verification. The paper continues with a discussion
and future work in section 8 and a conclusion in section 9.

2. BACKGROUND

Reinforcement Learning is a sub-field of artificial intelli-
gence that focuses on training machine learning models to
make a sequence of decisions. Along with supervised and
unsupervised learning, reinforcement learning is one of the
three fundamental machine learning paradigms. The model
learns to achieve a goal in a complex, uncertain environment
by interacting with the environment and receiving feedback in
the form of rewards or penalties. The RL model, also known
as an agent, learns a policy - a mapping from states to actions
- that maximizes the cumulative reward over time [6].

Deep Reinforcement Learning is used when dealing with
high-dimensional, continuous action spaces, DRL integrates
deep learning and reinforcement learning. DRL uses neu-
ral networks to approximate the reward function and/or the
policy[7]. Two main types of DRL are Batch RL, where the
agent learns from a fixed batch of experiences, and Online RL,
where the agent learns while interacting with the environment.

Formal verification is a process used in software engineering
to check whether a system meets a given set of specifications
or properties. The main principle behind formal system analy-
sis is to construct a computer-based mathematical model of the
given scenario and formally verify, within a computer, that this
model meets rigorous specifications of intended behavior[8].
Safety-Critical Systems are systems where precision is given
the most importance. Formal verification is pivotal in au-
tomation endeavors involving safety-critical systems, partic-
ularly where valuable machinery is employed [9]. Various
formal verification techniques consider the system’s dynamic
environment, accounting for factors such as moving targets
[10]. Deep reinforcement learning and formal verification can
be combined to create new frameworks that exploit their
complementary strengths. This synergy offers a potentially
effective way to raise the trustworthiness and security of Al-
driven systems.

However, fully realizing such a framework will require sig-
nificant additional research. The challenges include managing
massive state and action spaces, adjusting to changing formal
verification specifications, enhancing training processes, and
providing necessary tools to construct environments that effi-
ciently integrate standard formal verification approaches. This
is especially important in standard-governed businesses where
the adoption of models may need authorities’ approval.
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3. RESEARCH METHODOLOGY
3.1 Database and Search String

An extensive literature search was conducted utilizing reputed
databases including Springer, IEEE Xplore, Arxiv, AAAI and
Science Direct. The search string employed was ((“Formal
Verification” OR “Scalable Verification” OR "Model Check-
ing” OR “Formal Methods”) AND (“Deep Reinforcement
Learning” OR “Reward Function Design” OR “Deep Learn-
ing” OR “Agent based Learning” OR “Reinforcement”)) to
ensure the capture of a broad yet relevant set of literature.

3.2 Selection Criteria

Papers were evaluated based on title and abstract, ensuring
relevance to the formal verification of RL systems. Included
works provided case studies or detailed discussions on model
checking and property specification. Recent papers that were
Papers proposing different RL frameworks without a focus
on formal verification were excluded. Emphasis was placed
on including recent publications to ensure the incorporation
of the latest insights, methodologies, and developments in the
field of formal verification in RL systems.

3.3 Review Process

A set of pertinent questions guided the review process, probing
into the nature of formal verification performed, the case
studies used, identified challenges in formal verification, and
its effectiveness in the context of RL systems.

3.4 Data Extraction

Data were organized using Excel sheets, categorizing extracted
information on the effectiveness of formal verification, pro-
posed strategies for safety assurance, the type of approach
used for formal verification, and the challenges associated
with integrating formal verification with deep learning or
reinforcement learning.

3.5 Analysis

Papers were analyzed to extract diverse challenges and tech-
niques, prioritizing those with high frequency and relevance.
An additional exploration via Google searches supplemented
the identification of prominent frameworks and tools for the
verification of DRL networks. Each identified challenge and
technique was rigorously evaluated to ensure its pertinence
and contribution to the overarching narrative of the survey.

4. TECHNIQUES OF DEEP REINFORCEMENT LEARNING

Deep Reinforcement Learning brings together the concepts
from deep learning and reinforcement learning to build agents
that can learn to make sequences of decisions by interacting
with a complex environment. The introduction of deep learning
to reinforcement learning has mainly been to cope with high
dimensional input spaces, particularly those encountered in
tasks like game playing, robotics, and autonomous driving.
The following subsections highlight the foundational tech-
niques in DRL.



4.1 Q-Learning with Neural Networks

At the heart of many DRL algorithms is the Q-learning
algorithm. Q-learning seeks to learn the value of taking an
action in a state, often represented as Q(s, a). When combined
with deep learning, neural networks are trained to approximate
the Q-values, leading to the famous Deep Q-Network (DQN)
algorithm [11].

4.2 Policy Gradient Methods

Unlike Q-learning, which learns the value of actions, policy
gradient methods directly learn the policy function that maps
states to actions. This method works by optimizing the policy
in the direction that increases expected rewards [12]. Deep
neural networks can be used to represent and optimize com-
plex policy functions.

4.3 Actor-Critic Methods

Actor-critic methods combine the benefits of both value-based
and policy-based methods. While the actor component is
responsible for selecting actions, the critic evaluates those
actions. The combination allows for a more stable and efficient
learning process [13].

4.4 Experience Replay

To improve the stability and efficiency of DRL, experience
replay stores past experiences in a replay buffer. The agent
then samples mini-batches from this buffer to update the neural
network, breaking the temporal correlations and reusing past
experiences [14].

4.5 Exploration Strategies

Strategies like epsilon-greedy, softmax action selection, and
upper confidence bound (UCB) methods balance the explo-
ration and exploitation trade-off in DRL [6].

4.6 Target Networks

In algorithms like DQN, the rapid updates to Q-values can
lead to oscillations or divergence. To tackle this, a separate
network, the target network, is used to compute the target Q-
values, which gets updated less frequently than the primary
network [7].

4.7 Deep Deterministic Policy Gradient (DDPG)

DDPG is an off-policy algorithm that is particularly well-
suited for continuous action spaces. It uses a deterministic
policy gradient approach with concepts like target networks
and experience replay [15].

These techniques form the building blocks of DRL. They have
enabled agents to achieve superhuman performance in various
tasks. However, integrating deep learning with reinforcement
learning has also introduced new challenges, which we discuss
in the subsequent sections.
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5. TECHNIQUES FOR VERIFICATION

Deep Reinforcement Learning systems require rigorous veri-
fication methods to ensure reliability when applied to safety-
critical domains. This section highlights several foundational
techniques and strategies for formal verification in DRL sys-
tems.

5.1 Model Checking

Model Checking forms the crux of many verification proce-
dures. It exhaustively explores all possible states of a system
to ascertain if it meets a specified property.

« Probabilistic Model Checking: Evaluates the probabilities
of certain behaviors or states being reached in systems with
inherent randomness.

Non-Probabilistic Model Checking: Assesses systems
without accounting for randomness, ensuring deterministic
behaviors align with specified properties.

Interval Analysis: A method to provide bounds on un-
certainties, especially useful when exact values are elusive
or when dealing with systems having continuous variables
[33].

Machine learning techniques are being leveraged to augment
model-checking processes’ capabilities significantly. [30].

5.2 Linear Temporal Logic (LTL)

LTL is a symbolic logic that permits assertions about the future

of paths. For DRL, it can serve to model and verify temporal

properties of RL agents, such as ensuring an agent eventually
reaches a goal.

« Responsibility-Sensitive Safety (RSS) Model: A model
emphasizing safety by defining a set of rules which, if
followed, guarantees safe behavior [41].

o Linear Temporal Logic (LTL) Modeling: Uses LTL to
represent and enforce traffic or safety rules, ensuring agents
do not violate them[42].

5.3 Satisfiability Modulo Theories (SMT)

SMT extends the classical satisfiability problem by incorpo-
rating background theories like arithmetic. DRL can check the
consistency of various system behaviors with their specifica-
tions [33], [36].

5.4 Linear Equation

A mathematical statement equates two expressions.

o Automated Linear Equation Solving: Used for verifying
input-output behaviors of systems, ensuring that for given
inputs, the outputs remain as expected [39].

5.5 Mixed Integer Linear Programming (MILP)

A method to solve optimization problems where some vari-
ables can only take integer values. For DRL systems:

o Linear Programming and Relaxation Strategies: Incor-

porates MILP to derive optimal strategies or behaviors under
certain constraints [37], [38].



o Deep Imitation Learning (DIL): DIL learns the behavior
of an initial controller, inherently embedding safety con-
straints during the learning process. This approach ensures
that the derived controller produces safe and expected output
actions for any given input state, acting as a supplementary
method for input-output behavior verification[32].

5.6 Exact Methods and Over-Approximation-Based Ap-
proaches

These strategies focus on the precision of verification.

« Combination Strategies: Merge both exact methods and
over-approximation-based techniques to balance between
precision and computational feasibility[36].

« MDP and Automata Strategies: Involves creating ab-
stractions of the system dynamics using Markov Deci-
sion Processes (MDP) and then constructing automata for
verification[35], [40].

o Justified Speculative Control: An automated approach
leveraging predefined mapping rules to speculate on actions
for certain states or conditions. Its rule-based nature ensures
precision in predicting appropriate actions, streamlining the
verification process [31], [34].

The selection of verification techniques largely depends on
the specific requirements of the DRL system. These methods
serve to identify potential flaws and fortify the confidence in
deploying DRL in safety-critical applications.

6. CHALLENGES
6.1 Challenges in RL/DRL Systems

Reinforcement Learning, though promising, confronts various
challenges. The challenges outlined are intricately tied to
design, verification, and application of reinforcement learning
systems. These can be defined within reinforcement learning
in Safety Critical Systems.

o CDI1 - Partial Observability: In many real-world scenarios,
an agent cannot observe the entire state of the environment,
leading to partial observability. This makes it challenging to
make optimal decisions based solely on current observations
[16].

¢ CD2 - Environment Modeling: Accurately modeling the
environment is crucial for many DRL algorithms, especially
model-based approaches. Inaccurate models can lead to sub-
optimal or even dangerous actions [17].

¢ CD3 - Complexity of DRL Models: The deep neural
networks used in DRL can become highly complex, making
them computationally expensive and hard to interpret [18].

o CD4 - Achieving Transparency in DRL: Interpreting and
understanding the decisions made by DRL agents is non-
trivial due to the black-box nature of deep networks. This
makes achieving transparency a challenge [19].

o CDS5S - Multi-Agent Coordination: When multiple agents
interact in a shared environment, coordinating their actions
to achieve global objectives becomes challenging [20].

¢ CD6 - Continuous Action Spaces: Dealing with continu-
ous actions, as opposed to discrete ones, complicates the

optimization process and introduces challenges in policy
representation [15].

o« CD7 - Sample Efficiency: Training DRL agents often
require a large number of samples. Reducing the number
of samples needed without compromising performance is a
significant challenge [21].

o CD8 - Safe Exploration: Ensuring that an agent explores
the environment safely without causing harm or getting
into unrecoverable states is crucial, especially in real-world
scenarios [22].

e CDY9 - Reward Shaping: Defining appropriate reward
functions to guide the agent toward desired behavior can be
subtle and challenging. Incorrect reward shaping can result
in unintended behaviors [23].

o CD10 - Exploration vs Exploitation Dilemma: Agents
must balance the act of exploring new strategies and exploit-
ing known ones. Achieving this balance is a longstanding
challenge in RL [6].

o« CD11 - Delayed Reward Problem: Actions taken by
agents may have consequences that manifest much later,
making it challenging to associate actions with their out-
comes [24].

e CDI12 - Credit Assignment Problem: Determining which
actions were responsible can be non-trivial when rewards or
penalties are received, especially in scenarios with delayed
rewards [7].

e CD13 - Over-fitting to the Training Environment: DRL
agents can become too specialized in their training environ-
ments, performing poorly when exposed to slightly different
scenarios [18].

o« CD14 - Validation of Safety Properties: Ensuring that
DRL agents adhere to safety constraints during training and
deployment is a challenge, especially given the complexity
of the models involved [25].

o CD15 - Resilience to Adversarial Attacks: Like other
deep learning models, DRL agents can be vulnerable to
adversarial attacks, where slight input perturbations can lead
to drastically different and potentially unsafe actions [26].

o CD16 - Assuring Generalization Capability: Ensuring
that a DRL agent can generalize its learned policy to new,
unseen situations is crucial for many applications, especially
those in dynamic environments [27].

« CD17 - Handling Model-Data Mismatch: Differences
between the model’s assumptions and real-world data can
lead to performance degradation or unexpected behaviors in
DRL agents [28].

o CD18 - Real-Time Decision Making: For applications that
require real-time responses, like robotics or autonomous
vehicles, DRL agents must make decisions within tight time
constraints, adding another layer of complexity [29].

These challenges highlight the ongoing requirement for per-
sistent exploration and advancement within the domain of RL
and DRL. They also emphasize the necessity for implementing
formal verification methodologies to protect the efficacy of RL
systems.



6.2 Challenges of Formally Verifying a DRL System

Based on our survey, various researchers have explored and
experimented with strategies in RL/DRL. Throughout their
endeavors, they’ve shed light on several challenges. Though
diverse across different domains, these challenges converge
into some commonly observed themes. Here, we present a
consolidated overview of these mentioned challenges.

e CF1 - Resilience to Defense Mechanisms: DRL systems
must be resilient against various defense strategies, ensuring
their proper functioning even when subjected to unforeseen
disturbances or attacks [34], [38], [37], [53], [52].

« CF2 - Balancing Search Guarantees with Computation
Times: Achieving optimal results often demands extensive
searches. However, this needs to be balanced with compu-
tational efficiency to be practically viable [39], [36].

¢ CF3 - Complexity: The inherent complexity of DRL algo-
rithms makes them challenging to analyze and verify[33],
[38], [37], [50].

e CF4 - Limited Computational Efficiency of SMT
Solvers: Satisfiability Modulo Theories (SMT) solvers are
vital for verification. Still, their computational demands can
sometimes be limiting for large-scale DRL systems [33],
[38], [37].

o CFS - Non-linearity: DRL models often possess non-linear
characteristics that can complicate the verification process
[37].

¢ CF6 - Scalability: As DRL systems grow and become more
intricate, the verification processes must scale without an
exponential increase in complexity [49], [33], [39], [52],
[36].

o CF7 - Integration: Integrating DRL systems with other sys-
tems or platforms poses verification challenges, especially
concerning compatibility and performance.

+ CF8 - Environmental Complexity: The diverse and dy-
namic environments in which DRL systems operate add
complexity to the verification task [54].

¢ CF9 - Continuous State and Action Spaces: DRL systems
often work in continuous spaces, complicating the task of
exhaustive verification [59].

e CF10 - Formalism: Establishing a formal structure or
methodology for DRL systems is challenging, given their
dynamic nature [57].

o CF11 - Precision vs Scalability Trade-off: As verification
processes become more precise, they may become less
scalable, and vice versa [36].

¢ CF12 - Need for Robustness Verification: It’s essential to
ensure that DRL systems are functionally correct and robust
against various uncertainties [36], [36].

o CF13 - Adversarial Attacks: DRL systems can be targets
for adversarial attacks, where slight input perturbations can
lead to significant deviations in behavior [37].

o CF14 - Training Process Uncertainties: The uncertainties
inherent in the training process can lead to unexpected
behaviors during real-world deployments [55].

« CF15 - Evaluating Trained Policies: Properly evaluating

and verifying the policies learned by DRL agents is crucial
for safety-critical applications [58].

« CF16 - State Space Explosion: The exponential growth in
the state space, especially in complex environments, makes
exhaustive verification nearly impossible [40], [52].

e CF17 - Learning-based Synthesis: Integrating learning
processes into system synthesis adds another layer of com-
plexity to the verification task [39].

o« CF18 - Verification of Multiple Networks: As DRL
systems might consist of multiple neural networks, verifying
their collective behavior becomes challenging [49].

7. FRAMEWORKS AND TOOLS FOR VERIFICATION

As Deep Reinforcement Learning continues to be paramount
in safety-critical domains, numerous frameworks and tools
have been developed to address its challenges. These tools are
geared towards ensuring robustness, safety, and verification in
DRL applications.

7.1 COOL-MC

COOL-MC is a comprehensive tool integrating reinforcement
learning and model checking, allowing for an intertwined
verification and learning process. This ensures that the RL
models align with predefined specifications throughout the
learning phase [47].

7.2 whiRL 2.0

The whiRL 2.0 tool capitalizes on techniques such as k-
induction and employs semi-automated invariant inference,
ensuring that the RL models’ behaviors remain within desired
boundaries [49].

7.3 Reluplex

Reluplex is a specialized algorithm for verifying neural net-
works that employ the ReLLU (Rectified Linear Unit) activation
function. This makes it particularly relevant for networks used
in various DRL systems, ensuring their behaviors align with
desired safety specifications [43].

7.4 TRAINIFY

TRAINIFY presents a unique combination of CEGAR
(Counterexample-Guided Abstraction Refinement) driven
training with a verification framework. This integrated ap-
proach ensures that DRL systems are trained optimally and
verified for safety concurrently [48].

7.5 Safe Reinforcement Learning for CPSs

This framework integrates formal modeling and verification
into the RL process for Cyber-Physical Systems (CPSs). Such
integration ensures that RL models catering to CPSs are not
just optimal but also verifiably safe [50].

7.6 NEURODIFF

NEURODIFF focuses on the differential verification of neu-
ral networks, utilizing fine-grained approximation techniques.
This approach guarantees that slight changes or perturbations
to the neural network don’t cause undesired behaviors [52].
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7.7 Task Space Approach

This method provides provable safety guarantees for deep re-
inforcement learning when applied to robotic manipulations in
human-centric environments. Ensuring safety in such scenarios
is crucial, and the task space approach tailors its verification
techniques accordingly [51].

7.8 VerifAl

VerifAl is a comprehensive tool dedicated to formally design-
ing and scrutinizing Al-driven systems. Its capability to tackle
the complexities of DRL systems brings it to the forefront of
verification tools in the Al safety domain. [44]

7.9 Sherlock

Sherlock is engineered explicitly for the safety verification of
deep neural networks. Its robust framework guarantees that
these networks, pivotal in numerous DRL applications, func-
tion within safe parameters, eliminating unforeseen adverse
behaviors. [45]

7.10 Neurify

Neurify introduces an innovative neural network verification
approach, banking on a linear approximation strategy. Such an
approach ensures the robustness and safety of neural networks
in dynamic DRL environments. [46]

8. DISCUSSION AND FUTURE DIRECTION

The domain of Deep Reinforcement Learning melded with
formal verification, stands at an exciting crossroads of chal-
lenges and potential breakthroughs. There have been survey
papers that highlighted research in the area of DRL and Formal
verification. Still, this paper stands out as it reflects the new
advancements made in the field and introduces tools and
frameworks to automate some of the mundane processes [60].
The paper also discusses the challenges of using reinforcement
learning and integrating the Formal Verification processes with
DRL systems.

While academic advancements in DRL and its verification
are laudable, the real litmus test lies in its application within
practical scenarios. Gaining insight into the tangible challenges
when deploying these strategies in real-world systems can
shape our academic pursuits. What best practices are industry
professionals leaning toward? Are there any in-field method-
ologies that overshadow others in terms of Capability? These
are the pressing questions that could redefine the academia-
industry connection.

Implications of this study extend to both the academic and
industrial realms. The identified challenges and proposed
solutions can inform the development of more refined DRL
applications, leading to safer, more reliable systems. Moreover,
our findings can catalyze collaborative efforts in the fields of
Cybersecurity, IOT, Health Care, and Manufacturing. These
strategies hold the potential to enhance the safety protocols
in robotics and could significantly pave the way for a more
controlled and systematic development of artificial intelligence
applications.

A Systematic Literature Review (SLR) stands out as a valuable
tool to uncover the state of DRL verification within operational
setups. Such an endeavor can shed light on current industry
norms, tangible challenges, and adopted resolutions. By fos-
tering dialogues with professionals in the field and scouring
academic contributions, a nuanced perspective can be pieced
together for DRL verification’s real and theoretical facets.

9. CONCLUSION

In the rapidly evolving domain of Deep Reinforcement Learn-
ing (DRL), the need for adequate formal verification becomes
ever more pressing. This paper provided a comprehensive
exploration of DRL and the challenges associated with its
verification, offering insights into its evolution, techniques,
and applications across various domains. Key challenges, from
environmental complexities to the intricacies of evaluating
trained policies, were brought to the fore, emphasizing the
multifaceted nature of DRL systems.

A curated collection of tools and frameworks vital for veri-
fying DRL was showcased, offering a lens into the resources
available to researchers and industry professionals. The in-
creasing incorporation of DRL in safety-critical applications
makes these tools indispensable.

In conclusion, while the challenges in formal verifying DRL
systems are substantial, they are not invincible. It’s important
to note that the applicability of the challenges and tools men-
tioned is specific to the domains and use cases cited herein.
Readers are encouraged to carefully evaluate the relevance of
these findings based on the nuances of their unique situations
and challenges. Through a combination of research findings
and industry practices bolstered by an empirical review, we
can navigate these barriers. With its depth and breadth, this
paper is poised to significantly shape the decision-making
perspectives of its audience, promoting well-informed choices
in the intricate world of DRL and its verification.
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