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Abstract—Deep learning models have been successfully
adopted in anomaly detection for multivariate time series data
in various fields. These models are good at capturing complex
time dependencies and extracting meaningful patterns from
time series data. However, the trained models may become
outdated due to unforeseen changes in real-world data, which
can lead to a decrease in the quality of model service. There-
fore, it is crucial to continuously monitor the performance of
the model and analyze its behavior to ensure its reliability and
availability. We propose an online data drift detection method
that uses an unsupervised deep learning network, Variational
Autoencoder (VAE), to monitor deep learning models in
the field of multivariate time series anomaly detection. This
method consists of three main steps namely data collection
and statistical analysis, real-time drift detection, and drift
interpretation. We collect raw time series data and model
prediction data non-invasively from the model server. Then
they are separated into windows for drift detection. Further-
more, the method can provide analysis and interpretation when
drift is detected. Our evaluation experiments involve three
real-world datasets from various industrial domains and four
different structured anomaly detection models. We validate the
effectiveness of drift detection in multivariate time series, and
then test how the anomaly detection models perform during
data drift detection. The highest improvement in F1 score is
approximately 0.16. In addition, we provide an analysis of the
interpretability of the model performance.

Keywords–drift detection; interpretability; anomaly detection
services; deep learning; multivariate time series; monitor

1. INTRODUCTION

In recent years, deep learning models have made significant
advancements in anomaly detection (AD) for multivariate time
series (MTS). These models are widely used in various fields
such as finance, healthcare, and industrial monitoring to detect
anomalies [1], [2]. Deep learning networks such as recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs) have demonstrated their ability to capture complex
temporal dependencies and extract meaningful representations
from MTS. Their automatic learning capabilities make them
well suited for anomaly detection tasks, allowing them to
learn patterns and detect deviations from normal behavior
[3]. However, deploying deep learning-based anomaly detec-

tion services in real-world scenarios requires more than just
training and evaluation. It is critical to continuously monitor
the model’s performance, analyze its behavior, and identify
potential problems.
In the field of Machine Learning Operations (MLOps), training
data and models can become outdated due to unforeseen
changes in data and real-world conditions. This can lead to a
degradation of the model’s inference performance [4]. MLOps
monitoring focuses on the performance of models in produc-
tion environments and aims to identify model performance
degradation, concept drift, and other anomalies that may affect
the reliability and effectiveness of models [5].
For anomaly detection services based on deep learning, mon-
itoring MTS involves several aspects. Firstly, dynamic data
needs to be continuously monitored to detect potential patterns
or changes in data distribution. Secondly, the performance of
deep learning models can degrade due to data drift and other
factors [6]. This paper focuses on monitoring raw data (input
and output), statistical values (such as mean and standard
deviation), and data drift (including covariate drift and concept
drift) [4]. (1) Covariate drift refers to a difference in the
distribution between production data and training data [7].
(2) Concept drift refers to the evolution of the relationship
between input and output over time [8].
When monitoring anomaly detection services for MTS in real-
world scenarios, several challenges need to be addressed.
• The Quality of Model Services Lacks Standards. While

latency and overhead are commonly used to evaluate system
quality, there is a lack of uniform standards for evaluating
the quality of model services. We propose the use of raw
data (input and output) and statistical values as metrics for
evaluating model service quality.

• Lack of Data Drift Labels. When the model service is
online, it is difficult to obtain ground truth in time [9].
Therefore, it is challenging to determine whether data drift
has occurred. Traditional supervised and semi-supervised
methods are not suitable for data drift detection in this con-
text. To solve this problem, we need to apply unsupervised
data drift detection methods and improve detection accuracy
by reducing noise alerts.

• The Detection Method Needs to be Updated in Time.
Traditional time series drift detection methods typically
involve dynamic fitting based on historical data. These
methods tend to be relatively simple, and their performance
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relies on the quality of the historical data. However, when
conducting online data drift detection for anomaly detection
services, it is crucial to update the detection method in real
time. This approach helps minimize the need for manual
adjustments and reduces model maintenance costs.

• Interpretability. When data drift is detected, it is crucial
to provide accurate interpretations of the model’s service
quality [10]. Simply applying drift detection algorithms to
a single type of data is insufficient for interpreting drifts.
Therefore, it is necessary to develop a method that can
effectively detect abnormal situations in model services and
offer reasonable interpretations.

To address the above challenges, our goal is to develop
an accurate, efficient, and scalable drift detection method
for drift detection in MTS anomaly detection services. We
propose an online data drift detection method for anomaly
detection services based on deep learning, as shown in Figure
3. (1) The method collects raw time series data and model
prediction data from the anomaly detection service. (2) It
applies an unsupervised MTS drift detection method based
on VAE to detect real-time changes in the data. (3) When
a drift is detected, we provide a reasonable interpretation
by incorporating statistical data and drift metrics. The main
contributions of this paper include:
• We have developed a novel data-driven monitoring scheme

for MTS anomaly detection services. By analyzing data in
real time, including windowed data, differences between
reconstructed data and original data, the anomaly ratio of
predictions, and their statistical values, we evaluate the
service quality of the model and monitor anomaly detection
models in production environments.

• Our solution is one of the earliest attempts to apply deep
learning-based drift detection algorithms to MLOps moni-
toring. It achieves high-performance analysis through unsu-
pervised deep learning without requiring manual labeling.

• During the drift interpretation stage, we interpret the
changes in service quality with data information. We have
successfully designed a method that accurately detects data
drift in services based on deep learning and provides rea-
sonable interpretations.

The rest of this paper is organized as follows. Section 2
describes the background of relevant researches including
MLOps, MTS anomaly detection, and drift detection. Section
3 introduces the technical architecture of our online data
drift detection approach for anomaly detection services. In
Section 4, we evaluate our online data drift detection method
quantitatively and qualitatively by using different datasets
and deep learning models for anomaly detection. Section 5
provides an overview of related works. Finally, Section 6
concludes.

2. BACKGROUND

2.1 MLOps

In recent years, a number of standardized MLOps platforms
have been developed to accelerate the development process

of machine learning algorithms and to support the large-
scale deployment and maintenance. Popular platforms include
AWS’s SageMaker, Google’s TensorFlow Extended (TFX),
Microsoft’s Azure ML, Kubeflow, Metaflow [11]. The life-
cycle of the ML model is shown in the Figure 1.

DESIGN MODEL
DEVELOPMENT OPERATIONS

Data Available
Check

Requirements
Engineering

ML Use-Cases
Priorization

Model Testing
and Validation

Data
Engineering

ML Model
Engineering

Monitoring and
Triggering

ML Model
Deployment

CI/CD
Pipelines

Figure 1: Lifecycle of the ML model

Model Training and Deployment. A common task in MLOps
is training and deploying models for accurate inference. These
platforms are designed to assist data scientists and developers
in quickly training and deploying high-quality ML models.
They provide fully managed tools for each step of ML
development, including data preparation, feature engineer-
ing, training, validation, etc. Once the model is trained, it
can be deployed in a production environment for prediction
serving [12]. Model servers, such as TorchServe (PyTorch
community), TensorFlow Serving (Google), ONNX Runtime
(Microsoft), and KFServing (Kubeflow community), are used
for deploying and managing machine learning models [13].
They offer a convenient and efficient way to apply trained
models in production environments, supporting various model
formats and deployment methods (e.g., HTTP, REST API,
gRPC API).
Model Monitoring. Model monitoring aims to achieve a
closed-loop ML lifecycle in MLOps by continuously moni-
toring deployed models to ensure their performance and reli-
ability [5]. However, the importance of managing the service
quality of models and accurately monitoring their key metrics
is often ignored. Model monitoring is essential to prevent
model degradation [4].

2.2 Drift Detection
2.2.1 Definition of Data Drift
Assuming that an ML model is trained on a source distribution
S and predicts on a target distribution T , it can be expressed
as the joint distribution P (x, y) of the input data x and the
label y, which can be further decomposed as

P (x, y) = P (x)P (y|x) (1)

The drift of ML can be defined as the change in the joint
distribution between training and prediction stages, where
P (xS , yS) is not equal to P (xT , yT ) [14]. According to the
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formula 1, researchers divided drift into two types: covariate
drift and concept drift.
• Covariate Drift. The distribution of input features changes,

and the relationship between input and output remains
unchanged.

P (xS) ̸= P (xT ) and P (yS |xS) = P (yT |xT ) (2)

• Concept Drift. The distribution of input features remains
unchanged, and the relationship between the input and
output of the model changes.

P (yS |xS) ̸= P (yT |xT ) and P (xS) = P (xT ) (3)

In reality, drift changes with time in different representations,
as shown in Figure 2. For example, it can manifest as a gradual
or an incremental drift over a long period of time (months or
even years), a sudden drift driven by some external events, or
a reoccurring drift due to seasonal and other reasons [15].
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Figure 2: Representation of data drift

2.2.2 Drift Detection Methods

Drift detection methods can be roughly divided into supervised
and unsupervised technology. Supervised technology aims to
detect changes in error rates (e.g., DDM, EDDM, HDDM)
[14]. Although supervised methods are efficient, they are not
applicable in real-world situations due to the need for ground
truth.
On the other hand, unsupervised technology focuses on mon-
itoring the data distribution and detecting changes in the
distribution of data over time. Typically, streaming data is
divided into time windows, and the distribution of the current
time window is compared against a reference one from the
training data [16]. The advantage of unsupervised methods is
that they do not need to label data during testing, and the
computation speed is faster. How to compare the distribution
of MTS is the primary issue of unsupervised technology, and
there are several popular methods available:
• Statistical Methods. These methods compare the distri-

bution of feature values between two sets of data and
evaluates whether the difference is statistically significant. A
commonly used statistical test is the Kolmogorov-Smirnov
test [17].

• Distance-Based Methods. These methods measure the dis-
tance between the feature distributions of two data sets
and trigger a drift alert when the predefined threshold is
exceeded. Commonly used distance metrics include the

Kullback-Leibler divergence [18] and the Hellinger distance
[19].

• Ensemble Methods. These methods use different subsets of
data or different algorithms to train multiple models [20],
[21]. By comparing the model prediction results of two data
sets on the same instances, we can test for significant drift.

Anomaly detection services may be affected by data drift.
MTS anomaly detection services based on deep learning
learn normal time series and identify deviating time series
as outliers. However, such models may incorrectly identify
unknown normals as anomalies. Anomaly detection is also
a classification problem that involves distinguishing between
normals and anomalies [22]. And the training data may not
cover all normal situations. Because its training uses only one
type of data, it weakens the learning effectiveness. We focus on
real scenarios and use unsupervised drift detection, as shown
in Figure 3.

2.3 Time Series Anomaly Detection

The general framework of anomaly detection consists of the
following three steps:
• Modeling and learning a representation of the data as shown

in the formula 4. In this step, the model M is trained using
the preprocessed features F (·).

M = Train(F (·)) (4)

Here, F (·) = {F (X1), F (X2), . . . , F (Xn)} represents the
features extracted from the time series Xi.

• Calculating the anomaly score as shown in the formula 5.
The anomaly score is calculated based on the generation
result G(·) and the preprocessed features F (·).

S = Score(G(·), F (·)) (5)

Here, G(·) = {G(X1), G(X2), . . . , G(Xn)} represents the
generation result obtained by using the model M .

• Setting the anomaly detection threshold as shown in the
formula 6. The anomaly flag is determined based on the
anomaly score S and a predefined threshold.

A = Detect(S, threshold) (6)

The first step is to extract important information from time
series, such as seasonality and time dependence. The tradi-
tional method is regression prediction such as ARMA and
ARIMA [23]. Recently, deep learning has also shown excellent
performance with popular networks LSTM and CNN [24].
The second step aims to obtain more uniformly and indepen-
dently distributed errors by calculating the difference between
observation and prediction.
The third step involves setting a threshold based on the
anomaly score to detect abnormal points. A widely used
method in the industry is to calculate the prediction residual
from the first step. Then, the 3σ method or setting a p-value
threshold can be applied [25]. Another approach is to map the
residuals to the kernel space and use a hyperplane to separate
most of the training data points from a few data points that
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Figure 3: The framework of online data drift detection for anomaly detection services

are considered as exceptions [26]. However, in practice, the
unsupervised anomaly detector is easily affected by random
noise, leading to many false alarms [27].
As shown in the figure 4, MTS is the continuously sampled
multivariate observations XN = {x1

N , x2
N , . . . , xM

N }, where
M and N are metric and time respectively. MTS data typically
exhibits time dependency within a single dimension (e.g., pe-
riodicity and seasonality of CPU utilization) and inter dimen-
sional dependency across different dimensions (e.g., positive
correlation between TCP traffic and CPU utilization) [28]. The
goal of MTS anomaly detection is to determine whether the
observed value Xi is abnormal. Furthermore, interpretability
involves identifying a set of dimensional metrics that are most
likely to cause an anomaly.
MTS anomalies can be roughly divided into three types:
temporal anomalies, interdimensional anomalies, and interdi-
mensional temporal anomalies [28]. Temporal anomalies occur
when the data of a single dimension deviates significantly from
its historical normal pattern. Interdimensional anomalies occur
when multiple dimensions exhibit a certain relationship (e.g.,
positive or negative correlation), but the relationship violates
the historical pattern. Interdimensional temporal anomalies
involve violations of both interdimensional and time depen-
dencies.
MTS anomaly detection is commonly applied in various do-
mains such as the Internet of Things, spacecraft, and network
attacks [24], [29], [30], [31], [32]. RNN and CNN are fre-
quently employed in these applications. Dimension reduction
is one of the significant contributions of them [29].
Our method uses an unsupervised nonparametric deep learn-

ing, which offers several advantages. The advantage is that we
do not need data labels to train the model and avoid manually
configuring drift detection rules. This approach is particularly
beneficial in practice.

Point

time

timemetric

Sliding Window Observation

Figure 4: Data formulation of MTS X ∈ Rm×n [28]

3. METHODOLOGY

In this section, we introduce the drift detection method for
anomaly detection services. Figure 3 shows the end-to-end
approach for monitoring the quality of the model service,
which consists of three main components:
• Data Collection and Statistical Analysis. We modify the

Python source code of the model server (e.g., TorchServe,
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TensorFlow Serving). When the model server executes pre-
diction tasks, it automatically collects the input and output
data of the model without invasion. We then aggregate and
calculate statistical values to reflect the state of the model.

• Real Time Drift Detection. We apply deep learning drift
detection algorithm to the collected data in order to detect
any changes in the model service.

• Drift Interpretation. We analyze the impact of each dimen-
sional feature to find the reason triggering the drift. And we
can interpret the drift by combining raw values, statistical
values and drift detection metrics.

3.1 Data Collection and Statistical Analysis

In order to collect data for monitoring the performance of the
model, we modify the Python source code of the model server
(e.g., TorchServe, TensorFlow Serving). Taking TorchServe as
an example, we modify the function handle(self, data, context)
located in “site-packages/ts/torch handler/base handler.py”.
This modification allows us to extract and transfer the input
and output data of the model service to other customized
components.
By modifying the model server, we can capture the input
and output data of the anomaly detection model during the
prediction task. The collected data includes the input features
provided to the model and the corresponding model predic-
tions or outputs. We aggregate and calculate statistical values,
including the average and standard deviation of the input, as
well as the proportional changes of the output types.
In order to analyze the behavior of the model within a specific
time interval, we utilize the concept of the window. By using
the sliding window, we can observe changes in the model’s
behavior within a defined time interval. It enables us to capture
temporal patterns, calculate statistical metrics within each
window, and detect potential drift over time. The size of the
window depends on the specific requirements of the user. We
can adjust it to capture short-term or long-term variations in
the model’s behavior. The Figure 4 shows the windowed MTS.

3.2 Real Time Drift Detection

In Section 3.1, we have implemented real-time windowing of
the raw data. In this section, we focused on analyzing the time
series of the windowed input features and the windowed output
results separately to detect both covariate drift and concept
drift. Our method stands out by combining deep learning with
dynamic one-class learning techniques [33] that can adapt
and update themselves. This unique approach enable us to
effectively analyze complex and dynamic MTS.

3.2.1 Input Windows

We first normalize the data. It is common to standardize the
entire time series during training. However, this approach
has two risks [25]: (1) The impact of future data. During
normalization, the mean and standard deviation are calculated
from the entire time series, which means that the current
time series is influenced by future data. It is unlikely in
reality; (2) The complexity of the input space. Time series

with similar trends may be mapped to different data points
after normalization, resulting in a complex input space and
decreased generalization ability of the model.
To address these issues, we employ a real-time dynamic nor-
malization using sliding windows. We apply the normalization
to each dimension of the historical input using the standard
zero mean and unit standard deviation normalization. It avoids
introducing future time series values. Additionally, by mapping
all input features to the same scale, it simplifies the input
space and enhances the generalization ability of the model for
various types of time series.
The regression network used in our method is versatile and
can be any network architecture, such as CNN, LSTM, VAE,
etc. We choose the VAE regression network to generate the
input windows.
The Variational Auto-Encoder (VAE) is a generative model
consisting of an encoder and a decoder. The encoder maps the
input data x to a latent space z, while the decoder samples
from the latent space z to reconstruct the input data x′. During
training, the VAE learns the latent representation of the data
by maximizing the variational lower bound.
Assuming the input window Xt−w+1:t is an M ×W dimen-
sional matrix, which is flattened into an M ×W dimensional
vector x. The latent space z is a K dimensional vector. The
encoder maps x to the distribution of z, and the decoder
samples from z to reconstruct x. We can get a variational
lower bound as shown in the formula 7:

log pθ(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)) (7)

• Encoder: qϕ(z|x) = N (z|µϕ(x), σ
2
ϕ(x)). (µϕ(x) and σ2

ϕ(x)
are mean and variance of z respectively, ϕ denotes param-
eters).

• Decoder: pθ(x|z) = N (x|µθ(z), σ
2
θ(z)). (µθ(z) and σ2

θ(z)
are the mean and variance of the reconstructed x′ respec-
tively, θ denotes parameters).

• Prior distribution: p(z), typically assumed to be a standard
normal distribution.

Maximizing the variational lower bound is equivalent to min-
imizing the reconstruction error and the KL divergence, given
by:

L(θ, ϕ;x) =
1

2

D∑
i=1

(
1 + log(σ2

ϕ(x))− µ2
ϕ(x)− σ2

ϕ(x)
)

− log pθ(x|z) (8)

By using the backpropagation algorithm, we can optimize the
parameters of the encoder and decoder to learn the latent
representation of the window.
As shown in the second block of Figure 3, the drift detection
for the input consists of two stages. In the first stage, we em-
ploy the regression network VAE to reconstruct the historical
window data, capturing the temporal dependencies on a single
dimension and the dependencies between each dimension.
In the second stage, we calculate the difference between
the original window W I

t and the reconstructed window W I′

t

using metrics such as Kullback-Leibler divergence, Euclidean
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distance, cosine similarity, etc. Based on predefined rules, we
determine whether the distribution has changed. If drift is
detected, we update the regression network VAE. Otherwise,
we continue sliding the window and repeat the detection.
Assuming at time t, the window data is Wt = Xt−w+1:t ∈
m×w, and the regression function is Ft. We can train Ft and
reconstruct Wt:

Ft = train(V AE,Wt) (9)

W
′

t = Ft(Wt) (10)

We can calculate the distance between Wt and W
′

t with the
euclidean distance as formula 11.

dt(Wt,W
′

t ) =

√√√√ M∑
i=1

W∑
j=1

(Wt,ij −W
′
t,ij)

2 (11)

Then we compare dt with the predefined threshold to deter-
mine if drift has occurred.

drift =

{
1 if dt > threshold
0 otherwise

(12)

By sliding the window with a step s, we obtain Wt+s. If
drift is detected at time t, we retrain the regression function
Ft+s = train(V AE,Wt+s). Otherwise, we keep it unchanged
Ft+s = Ft. We keep this process cycling.
Finally, we can obtain the dt of the window in real time. We
can use dynamic threshold based on dt. Here, we use the 3σ
method. Assuming the last drift time is tld.

µ =
1

t− tld + 1

t∑
i=tld

di (13)

σ =

√√√√ 1

t− tld + 1

t∑
i=tld

(di − µ)2 (14)

threshold = 3σ (15)

3.2.2 Output Windows

In reality, we can’t obtain the correctness of the predictions
of the anomaly detection model. So it is impossible to know
the changes in the performance of the model. Inspired by the
ADWIN algorithm, we divide the streaming data into real-time
windows, continuously calculate the proportion of the model
prediction result categories in the window. By monitoring the
change in the ratio (Ri, shown in the formula 16) of abnormal
labels within the window and combining it with the changes
in the input data, we can determine whether drift has occurred.

Ri =
sum(Yt−w+1:t == anomaly)

w
(16)

Finally, we simultaneously capture the changes in both the in-
put and output of the anomaly detection service and feed them
into the drift detection module for comprehensive analysis.

3.3 Drift Interpretation

The complexity of model services often hinders understanding
of the model, making diagnosis and problem-solving difficult.
A better comprehension and transparency of the model is
crucial for the quality of service.
Firstly, we provide a detailed definition of data drift patterns
to better interpret the situation of the model. In Section 2,
we defined covariate drift and concept drift. Consider two
drift modes: sudden drift and incremental drift. We can define
four common drift patterns. Assuming tspan represents is a
manually set time interval.
• sudden covariate drift:

dt,changed ∩ (t− tld < tspan)
• incremental covariate drift:

dt,changed ∩ (t− tld > tspan)
• sudden concept drift:

dt,unchanged ∩Ri,changed ∩ (t− tld < tspan)
• incremental concept drift:

dt,unchanged ∩Ri,changed ∩ (t− tld > tspan)

In the prior steps, we have collected essential information
about the model and calculated statistical values and drift
detection metrics. When drift is detected, we compare the
distance dt of each dimensional feature. We believe that
features with larger distance are more likely to trigger drift. We
can analyze these features by combining the raw values and
statistical values to interpret the drift. We hope that through
interpretation, we can facilitate the maintenance and optimiza-
tion of anomaly detection services in real-world applications,
in order to achieve better performance.

4. EXPERIMENTS AND ANALYSIS

Firstly, we introduce the datasets and metrics used for evalu-
ation. Then, we design experiments to answer the following
research questions:
• RQ1: How effective is the drift detection method in MTS?
• RQ2: Is drift detection effective in improving the quality of

anomaly detection services based on deep learning? What
are the differences in the effectiveness of drift detection
when applied to different datasets and different anomaly
detection models?

• RQ3: Can we explain the performance of a model based on
drift interpretation?

4.1 Datasets and Evaluation Metrics

We used three publicly available datasets, all of which are
MTS. Their characteristics are summarized in Table I.
• Server Machine Dataset (SMD): This is a five-week long

dataset of stacked traces of the resource utilizations of 28
machines from a compute cluster [34]. We use the nontrivial
sequences machine-1-1 in this dataset.

• Mars Science Laboratory (MSL): This dataset corresponds
to the sensor and actuator data for the Mars rover itself
[32]. We consider only the three nontrivial ones (A4, C2,
and T1).
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• Secure Water Treatment (SWaT): This dataset is collected
from a real-world water treatment plant with 7 days of
normal and 4 days of abnormal operation [35].

For anomaly detection, we use precision, recall, area under
the receiver operating characteristic curve (ROC/AUC), and
F1 score to evaluate the performance of all models [36].
For drift detection, we use VAE for regression to reconstruct
the window data, with some hyperparameters as follows:
Window size = 200, Sliding stride = 100, VAE hidden dim
= 256, VAE latent dim = 2, VAE learning rate = 0.01.

TABLE I. The dataset statistics

Dataset Train Test Dimensions Anomalies(%)
SMD 28479 28479 38 9.46
MSL 58317 73729 55 10.72
SWaT 99000 89984 51 12.17

4.2 RQ1. The Effectiveness of Drift Detection

We apply HDDDM [19] (an unsupervised drift detection
algorithm on multivariate time series) and our method to detect
drifts in the three MTS datasets. The detected number of drifts
is shown in the Table II. We found that all of them have data
drift. Especially when there are more anomalies, drift occurs
more frequently. The results of the two methods are shown
in Figure 5. Due to the large number of features and data,
we select the first 3 dimensions and 10,000 data points for
plotting. It can be observed that our method has a higher
threshold and is not easily to be triggered, while HDDDM
detects drift more frequently.

TABLE II. The number of drifts

Number of drifts
VAE(3σ) VAE(2σ) VAE(σ) HDDDM

SMD 2 19 142 46
MSL 6 13 368 82
SWaT 8 25 449 65

Our drift detection algorithm can output the distance of
features. We normalize these values to a range of 0-1, enabling
the analysis of the impact of each feature on the drift. We
visualize it using the heatmap as shown in Figure 6. The darker
the color in the image, the greater the impact caused by the
feature. The y-axis represents drift instances, and the x-axis
represents the different features. Through the heatmap, we can
easily identify the features that have a significant impact on
drift.
Our method performs well in detecting drift in MTS. The
detected drift can be identified by analyzing the heatmap for
relevant features and then locating the corresponding regions.
Additionally, our method has a default threshold of 2σ (The
performance is excellent in RQ1.), which can be manually
adjusted to adapt to different sensitive environments.
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Figure 5: SMD drift detection
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Figure 6: SMD heatmap

4.3 RQ2. The Effectiveness of Monitoring AD Models

For real-time monitoring of anomaly detection models, we
select data segments with high anomaly values for experimen-
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tation, as shown in Table III.

TABLE III. The selected dataset statistics

Dataset Segment Segment Anomalies(%)
SMD 15001-20000(5000) 43.8
MSL 5001-10000(5000) 23.3
SWaT 10001-15000(5000) 15.9

We select four deep learning models of anomaly detection,
USAD [22], LSTM AD [32], GDN [36], and MAD GAN
[37], to analyze the effect of drift detection algorithms on deep
learning anomaly detection. The model is used to evaluate
the performance of the drift detection algorithm. We utilize
selected sets of 5000 data points for real-time analysis using a
sliding window. During initialization, we train basic anomaly
detection models and drift detection models VAE with the
window data. When the drift is detected, we update both
models using the current window data. The final evaluation
metrics are computed as shown in Table IV. Original symbols
are without the drift detection. Symbols with ” ’ ” are with
the drift detection added.
From the table information, we observe that the effectiveness
of the drift detection on the service quality of the anomaly
detection models varies across different datasets. In general,
the improvement effect is shown. However, certain models
perform worse on specific datasets. Firstly, because we update
the anomaly detection models with window data, which may
not adequately represent the data distribution over a long
period. As a result, insufficient fitting may occur. Secondly,
models of anomaly detection are unsupervised models and
have higher requirements for data quality. Ideally, all normal
values should be fully covered. This can’t be achieved in the
window data.

TABLE IV. Results of anomaly detection models

Method SMD
P P’ R R’ AUC AUC’ F1 F1’

USAD 0.6808 0.4050 0.9973 0.8915 0.8929 0.7745 0.8092 0.5570
LSTM AD 0.7731 0.8644 0.9820 0.9844 0.9102 0.9406 0.8651 0.9205

GDN 0.2648 0.4233 0.9983 0.9298 0.8083 0.7988 0.4186 0.5817
MAD GAN 0.6169 0.2954 0.6127 0.5312 0.6447 0.5502 0.6148 0.3797

MSL
P P’ R R’ AUC AUC’ F1 F1’

USAD 0.9039 0.9047 0.6610 0.7350 0.8130 0.8510 0.7636 0.8111
LSTM AD 0.9056 0.9056 0.7404 0.8460 0.8539 0.9075 0.8147 0.8748

GDN 0.9923 0.9888 0.5862 0.7042 0.7915 0.8500 0.7370 0.8226
MAD GAN 0.9099 0.9082 0.5400 0.4008 0.7515 0.6756 0.6777 0.5561

SWaT
P P’ R R’ AUC AUC’ F1 F1’

USAD 0.1613 0.1613 0.6332 0.7967 0.7341 0.8167 0.2571 0.2683
LSTM AD 0.1613 0.3226 0.6360 0.1618 0.7355 0.4797 0.2573 0.2155

GDN 0.1613 0.3226 0.6170 0.3062 0.7259 0.5741 0.2557 0.3142
MAD GAN 0.1613 0.3226 0.6277 0.2871 0.7313 0.5632 0.2566 0.3038

4.4 RQ3. The Interpretability of the Model Performance

We selected the LSTM AD on the SMD dataset in RQ2 for
analysis. Firstly, based on the results, we found that there are
four drift alerts triggered among the 5000 time series, as shown
by the green regions in Figure 8. We first plot a heatmap
(Figure 7) of all drift points, which provides an intuitive
view. It is evident that Feature 22 had the most significant

continuous impact, making it a key feature for analysis. We
synthesize the statistical values of Feature 22 obtained from
real-time calculations, including the mean (blue), standard
deviation (orange), the proportion of anomaly detection model
predictions (Red Ri), and the occurrence time points of data
drift (green span). All these aspects are combined in Figure
8. Overall, the trend of the curve in the figure aligns with our
expectations. We can capture the dynamic changes from one
distribution to another. These validate the practicality of our
online data drift detection method.
Secondly, based on Figure 8, we can interpret the quality of
the model’s service. We can observe that all four detected
drifts were due to sudden covariance drift. They all become
anomalies due to changes in input features. Then it is detected
by the anomaly detection model, resulting in an increase in
Ri. This can also be inferred from the mean and standard
deviation of Feature 22, where the model considers them as
outliers during input fluctuations. However, there are two drift
segments that are not detected by our algorithm, likely due to
the strict default threshold we set. It can be adjusted manually
according to the specific usage environment.
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Figure 7: LSTM AD heatmap
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Figure 8: LSTM AD interpretability analysis

5. RELATED WORK

Anomaly Detection in Multivariate Time Series. Detecting
anomalies in time-series data has been extensively studied
[38]. Traditional statistical models, including ARIMA [39],
and SVM [40], have been widely used for anomaly detection in
both univariate and multivariate time series. Other techniques
such as wavelet analysis [41], pattern-based approaches [42],
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and distance-based methods [43], have also been employed.
At the same time, deep learning frameworks have gained
popularity due to their ability to handle high-dimensional
temporal data without assuming stationarity.
Deep learning models for multivariate time-series anomaly
detection often combine RNN with other architectures such
as CNN, VAE, or GAN. RNN is used to capture temporal de-
pendencies, while CNN, VAE, and GAN capture relationships
among the variables [44]. For a more comprehensive explo-
ration of deep learning techniques for time series anomaly
detection, readers are encouraged to refer to the latest survey
[45].
Drift Detection. There is extensive research on drift detec-
tion [7], [46], [47], [48], [49]. Common practices include
using custom tests to check if feature values fall within
specified ranges [50]. Various statistical hypothesis testing
and confidence interval-based approaches have been proposed
to evaluate whether two sets of samples are drawn from
the same distribution. (e.g., Kolmogorov-Smirnov test [17],
Maximum Mean Discrepancy [51]). However, these tests often
require careful tuning (e.g., appropriate kernels and hyperpa-
rameters). As a result, confidence interval-based approaches
are frequently employed for practical drift detection [4]. In
addition to model-agnostic techniques, specialized methods
that leverage the internal workings of the model and training
data have been proposed [52], [53], [54].

6. CONCLUSION

In this paper, we propose an online data drift detection method
for deep learning models in the field of multivariate time series
anomaly detection to ensure model reliability, availability,
and interpretability. We leverages real-time statistical values,
reconstructed data differences, ratio of output categories to
evaluate model service quality. We validate the effectiveness
and interpretability of our drift detection approach with real-
world datasets and different structured anomaly detection
models. Future research directions may include exploring
additional drift detection algorithms, incorporating feedback
mechanisms for continuous model improvement, and extend-
ing the approach to different domains.
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