
Anomaly Detectors for Self-Aware Edge and IoT Devices

Tommaso Zoppi4*, Giovanni Merlino2,3, Andrea Ceccarelli1, Antonio Puliafito2,3, and Andrea Bondavalli1

1 University of Florence, Department of Mathematics and Informatics, Viale Morgagni 65 – Florence (IT)
2 SmartMe.io, via Salita Larderia, 98129 Messina (IT)

3 University of Messina, Department of Engineering, 98166 Messina (IT)
4 University of Trento, Department of Information Engineering & Computer Science, Via Sommarive 9, Povo (IT)
tommaso.zoppi@unifi.it, gmerlino@unime.it, andrea.ceccarelli@unifi.it, apuliafito@unime.it, bondavalli@unifi.it

*corresponding author

Abstract — With the growing processing power of
computing systems and the increasing availability of massive
datasets, machine learning algorithms have led to major
breakthroughs in many different areas. This applies also to
resource-constrained IoT and edge devices, which will often
benefit from relatively small – but smart – local anomaly
detection tasks that aim at protecting the device, or the
information they convey from sensors towards a central node.
This provides the device with fault detection capabilities that
are typically required when engineering dependable devices,
services or systems. This paper overviews a pitfall-free
process to provide small devices with anomaly detection
capabilities, to make them self-aware of their health
condition, and possibly take appropriate countermeasures.
Our methodology applies to a wide range of Linux-based
devices: we show an application to a specific ARANCINO
device, which has already been successfully used in many
smart cities and sensing applications. We craft anomaly
detectors that are very effective in detecting most of the
anomalies. Additionally, we comment on the beneficial
impact of time-series analysis, which could help improve
detection performance even further, allowing to equip any
small device with responsive and accurate anomaly detection
machinery.

Keywords – anomaly detection, iot, edge, monitoring,
ARANCINO

1 INTRODUCTION

Edge learning refers to the deployment of Machine
Learning (ML) algorithms at the network edge [6]. The key
motivation of pushing learning toward the edge is to perform
on-site preprocessing and filtering of data, as well providing
edge devices with sophisticated yet lightweight means to
optimize their performance. Whereas the vast majority of
studies on ML rely on lab setups for which we assume the
availability of huge server farms, GPUs and any kind of
accelerators (including FPGAs), deploying ML algorithms in
the wild comes with obvious concerns [5], [6], [7]. Those are
not to be intended as showstoppers but require a dedicated
methodology to collect data, choose, train, test, and deploy
adequate ML algorithms on devices.

It would often be desirable to bring ML algorithms in
resource-constrained devices, which act as sensors, small
embedded systems or controllers, or Internet-of-Things (IoT)

devices in general. Those may find usage for a variety of
purposes including – yet not limited to – load balancing, data
preprocessing and cleaning, intrusion detection, or anomaly
detection. In contrast to cloud computing, where processing
and computation are centralized from a networking
perspective (even though servers may be physically
distributed), deploying services on the edge of the network
pushes a decentralized architecture for computing, storage,
and connectivity that can drastically enhance real-time
applications [51]. One of the critical requirements for any
device is being aware of its behavior (i.e., self-awareness);
this enables the device itself to act accordingly in case of
issues, and label itself as malfunctioning or performing self-
diagnosis routines to identify the root cause (if any) of the
behavioral anomalies in order to fix them.

Unfortunately, anomaly detection [13] is a complex data-
driven task that relies on i) collecting data about the normal
behavior of the target system/device, and ii) use it for training
Machine Learning (ML) algorithms that can find patterns on
this data that are far from expectations: those will be labeled
as anomalies. From a practical standpoint, data collection,
training and testing ML algorithms create a very time-
consuming and resource-heavy task; thus, at the current state
of the art, the problem of bringing ML to edge or resource-
constrained devices is still underdeveloped and needs further
research [6].

This study brings ML-based anomaly detectors to
resource-constrained devices for the high-level purpose of
making devices self-aware about the correctness of their
behavior, or of being under an attack or intrusion. This makes
devices able to monitor themselves, seek for potential
performance anomalies due to errors or attacks, and activate
diagnosis or recovery strategies whenever applicable.
Clearly, this process has to be free from obvious pitfalls [1]
that may have a detrimental impact on the entire process and
will likely result in deploying a detector with doubtful
usefulness. Examples include, but are not limited to:
sampling bias, inaccurate threat/error model, inappropriate
baseline or performance measures. We bring anomaly
detectors into resource-constrained devices through 4
composite steps: i) identify the anomalies we seek to detect,
ii) develop a lightweight monitor which is suitable for Linux-
based devices (publicly available at [3]), iii) a)conduct
experimental analyses in which the normal behavior of a
device is observed, and then b) inject errors while monitoring

24

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

2693-9177/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS60937.2023.00013

performance indicators, and iv) a) use the collected data to
train ML algorithms for anomaly detection, b) test their
behavior and c) install the most performing learned model on
the device.

We apply our methodology for deploying anomaly
detectors for ARANCINO [12] devices and ultimately make
them self-aware about their health state. Summarizing, the
novelty of this work is very relevant for the business
continuity of the smart city and crowdsensing applications
where devices such as the ARANCINO are being adopted.
Indeed we:

Propose a methodology for bringing anomaly
detectors (ML algorithms) into resource-constrained
devices that applies to all Linux-based devices.
Show how the methodology is free from pitfalls, and
that resulting anomaly detectors are able to detect
most of the performance anomalies, discussing
potential improvements.
Provide source code for the monitor and the data
analysis part, to increase the reproducibility of our
results and provide ready-to-use means to bring our
methodology over to other case studies.

The paper is structured as follows: Section 2 overviews
related works and basics on IoT systems, where resource-
constrained devices are most widely adopted. Section 3
overviews our target ARANCINO device, letting Section 4
expand on our methodology aimed at bringing anomaly
detectors to cyber-physical devices. Section 5 discusses our
experimental results, whereas Section 6 goes through
potential improvements of the detector through the
application of methods for time-series analysis. Section 7
concludes the paper.

2 RELATED WORKS: BRINGING ML ON THE EDGE

This section overviews related work on IoT systems and edge
devices, monitoring, anomaly detection and related metrics.

2.1 IoT Systems and Edge Devices
The Internet of Things (IoT) denotes a system of

interconnected physical devices and objects that utilize the
Internet to communicate and exchange data. These devices
can range from everyday consumer products like smart home
devices to industrial tools in factories [54].

Edge devices, on the other hand, represent the "edge" of
the network, acting as entry points to the core network. Edge
computing allows data processing to happen close to the data
source, improving response times and saving bandwidth [55].

A significant challenge in developing software for IoT and
edge devices is their inherent resource limitations. These
devices often have constrained computational capabilities,
storage, and power supplies [56]. This imposes a restriction
on the complexity of software that can be developed and
deployed, prompting the need for more efficient algorithms
and compact data representation.

In addition, these devices often have stringent power
requirements, given their portable nature or their remote,

hard-to-reach locations. Hence, the software must be
optimized for low power consumption [57].

Another challenge comes from the fragmented and rapidly
evolving nature of IoT platforms, where available software
libraries may not be up-to-date or standardized, hindering
software portability and interoperability [58].

Countering limitations related to software fragmentation,
when dealing with less resource-constrained edge devices,
such as those capable of hosting comprehensively capable,
and standardized, operating systems, e.g., *NIX-compatible,
or better still, Linux-based environments, containerization
technologies (and adjacent approaches) may help, by
isolating [59] the application from the hosting environment,
and coupling interop efforts with container-powered
deployment, i.e., CI/CD workflows’ design and maintenance.

2.2 Anomaly Detection
Detecting the activation of faults is a fundamental step to

achieving fault tolerance and going toward dependable
systems [14]. As a result, each device must be monitored to
understand if its behavior complies with expectations, or if
additional actions need to be completed to assure that the
system is working properly. This activity requires the
deployment of anomaly detectors, which identify patterns
that do not conform to a well-defined notion of normal
behavior [13]; anomalies may be the symptom of faults,
attacks, or upcoming failures. Recent trends [27], [40], [41]
show how data-driven detection may provide effective and
flexible means to detect anomalies, as opposed to traditional
rule- and signature-based mechanisms. Data-driven detectors
are usually implemented as binary classifiers (simply called
classifiers in the rest of the paper), which are Machine
Learning (ML) algorithms that assign either a positive or a
negative class to each data point. The negative class is
mapped to the normal class (no anomaly), whereas the
positive class is known as the anomaly class. Ideally, an
anomaly detector will be able to correctly classify the state of
the device, minimizing misclassifications – either false
alarms (False Positives, FP) or missed detection of anomalies
(False Negatives, FN).

Literature and practice tell us that the vast majority of
anomaly detectors for tabular data are implemented through
supervised classifiers [25], [34]. They require training data
for which the label is known and build a model that is usually
accurate, i.e., only a few misclassifications occur. Well-
known families of supervised classifiers are: i) tree-based,
mostly decision trees, ii) statistical techniques [26], iii)
distance-based learners [25], iv) support vector machines
[24], and deep neural networks (DNNs) [27], [30], [31].
DNNs are classifiers structured with many hidden layers and
are the de facto standard for classifying unstructured data
such as images, audio, lidar point clouds, and videos;
however, they often struggle when classifying tabular data.
For instance, recent works [27], [29], [30], [31], [42]
advocate that deep neural network classifiers applied to
tabular data have worse classification performance than other

25

supervised classifiers. There are also studies that convert
tabular data into images to fully exploit the potential of deep
learners in processing images [28], but classification
performance does not benefit much. On top of that, DNNs are
heavy models that do not pair well with devices that have
limited processing and storage resources, as is common for
IoT devices.

Anomaly detectors can also be implemented using
unsupervised classifiers, which do not require labels in the
training data: they build their model under the assumption
that anomalies due to hw/sw faults or ongoing attacks
manifest as observable deviations from the nominal behavior.
This makes unsupervised classifiers applicable even when a
labeled training set is not available; on the downside, they
usually generate a higher number of misclassifications –
especially false positives – than supervised classifiers [32],
[33], and are beneficial only when unknown anomalies or
zero-day attacks are a concern [42].

2.3 Monitoring IoT Devices and Embedded Systems
Anomaly detectors need to learn how the system behaves

normally: the enabling knowledge to complete this process
are the features that are continuously monitored from the
target device. Features are usually obtained by monitoring the
performance indicators of a device at the hardware or low
level [36], system level [9], [39], input/sensor [35],
environment [37], application level (e.g., SCADA [38]) or
even coding level [30]. Features can be textual or numeric:
textual features (e.g., the name of a protocol) are always
categorical, while numeric features may either be categorical
(e.g., the ID of a system call) or describing an ordinal range
of values, e.g., the percentage of memory used, or the number
of packets received from the network interface in a time
frame. Categorical features usually require preprocessing
before being fed to a classifier. In fact, classifiers may
compute algebraic calculus such as Euclidean distance [25]
or the estimation of angles in a multidimensional space,
which delivers misleading results when processing
categorical features.

2.4 Metrics to Evaluate Anomaly Detectors
The classification performance of anomaly detectors is

typically expressed using metrics [44] that compute correct
classifications, True Positives (TPs) and True Negatives
(TNs), and misclassifications, False-Positives (FPs) and
False Negatives (FNs), respectively. These metrics are
usually referred to as acan be aggregated into a wide variety
of compound metrics, among others: False Positive Rate,
Precision, Recall (or Coverage), and many others. In this
paper, we will mostly use the following ones, which account
for all 4 items of the confusion matrix and as such provide a
balanced view on FPs and FNs..

Accuracy (ACC) calculates the percentage of correct
classifications (TPs and TNs) over all classifications.
Importantly, 1 - ACC is usually referred to as the
misclassification rate.

Matthews correlation coefficient (MCC) [43] is
particularly suited when the dataset is unbalanced [2], i.e., the
occurrences of normal data points and anomalous data points
are significantly different. This situation occurs quite
frequently in the context of embedded systems or smart
sensors, which are expected to behave as expected in most
cases, observing only a few exceptions over time.

3 ARANCINOS: ENABLING ML ON THE EDGE

ARANCINO™ [12] is the trade name for a family of IoT and
embedded boards based on its namesake architecture.
SmartMe.io (https://smartme.io), a startup company from
Messina (southern Italy), conceived this architecture from the
ground-up, off a composite mix of state-of-the-art open source
(and open hardware) building blocks, and is routinely crafting
Industry 4.0 and Smart City solutions, for its customers
around the world, based on ARANCINO-compliant boards
exclusively. ARANCINO-enabled applications [53], [59] in
the wild so far include, among others: weather/pollution
monitoring, smart city public lighting, trailers’
mobility/health monitoring, bridges’/roads’ structural safety.

3.1 Building blocks of an ARANCINO
As depicted in Figure 1, the hardware/software

architecture embodied by the ARANCINO blueprint may be
exemplified by a (custom-built) Single-Board Computer
(SBC)-compatible layout, which features:

a Carrier Board, which runs a MicroProcessor Unit
(MPU), from Raspberry Pi-family Compute Modules
(RPi-CMs), which is a cheap, credit card-sized ARM64-
based GHz-class Linux-compatible computers;
one (or more) on-board MicroController Units (MCUs),
such as Microchip SAMD21-family ARM Cortex-M0+-
(on-module) RAM (e.g., 1GB) and (flash) storage (e.g.,
8/16/32GB eMMC)

Figure 1. An high-level overview of the ARANCINO
hardware/software architecture

26

two (or more) standard (i.e., mikroBUS™ Click)
ARANCINO Connectors, for peripherals (e.g., WiFi/BT
interfaces), transducers and all-round expandability;
other slots, most notably: 1 SPI, 25 GPIOs (pin sharing
configuration) 3 USB Host + 1 USB device (used to
program Compute Modules);

- A crypto-chip can be made available at will for hardware-
based secure key storage.

Those blocks are physically mapped onto the device as
showed in Figure 2.

3.2 Software running on the MPU
In terms of the (regular) software stack on the

ARANCINOs, there are four (core) components, as discussed
below.

The MPU (RPi-CM3) runs a Linux-based fork of
Raspbian OS, adapted to ARANCINO, which hosts

the lightweight in-memory key-value (KV) Redis
storage;

- the arancino-daemon service, which manages
communication over UART (USB) with the built-in
MCU, as well as with (additional) units when plugged-in
over USB; recent version support communication over
Bluetooth, and publisher/subscriber messaging as well;

- the lightning-rod (LR) low-level (watchdog-like) service,
to i) integrate the board into the Cloud infrastructure, ii)
forward timeseries data, and iii) support plugins used to
interact with the Cloud dashboard.

No special drivers are required. Driver-enabled I/O may
be then remotely accessed through the (I/O)Cloud [72], and
attached to remote Cloud-hosted IoT boards and/or VMs
transparently. The Cloud stack as well is built around open-
source technologies and extends the widely adopted
OpenStack ecosystem with a custom subsystem devoted to
IoT nodes onboarding, presence, and runtime
management/customization, called IoTronic, part of the
umbrella Stack4Things [72].

3.3 Software running on the MCU and Interconnections
On the MCU, an ARANCINO runs the (application-

specific) C/C++ firmware in compliance with the arancino-
library, which provides suitable primitives to read data off

(and store data to) the MPU-side business logic leveraging
the Redis-backed KV store.

The arancino-daemon on the MCU side and arancino-
library on the MPU side implement Cortex, a “no-frills”
ARANCINO-oriented communication protocol. Its name
intentionally refers to the cerebral cortex in the human brain,
where the cortex acts as a conduit between right and left
hemispheres of the brain. This split separates the real-time
processing that typically interacts with transducers and often
required to act promptly on the MCU from more elaborate
computing duties (e.g., ML-based inference at the edge, data
sync/transfer to the Cloud), which are almost batch-like on
the MPU. More in general, the “split-brain” approach leaves
room for a self-aware, proprioception-like approach where
part of the system takes care of introspective monitoring
duties, and the other part infers the health status of the node
overall.

4 A METHODOLOGY TO DESIGN SELF-CHECKING DEVICES

Our methodology to deploy anomaly detectors for
resource-constrained IoT and edge devices relies on the
following 4 steps.
S1. Create an error model that covers most of the anomalies

that can be generated by the manifestation of common
errors in Linux-based IoT devices.

S2. Create a monitoring system that fits our case study but
also applies to similar devices.

S3. Perform error injection campaigns in which we monitor
the behavior of the target device under normal operating
conditions and when errors are injected.

S4. Use collected data to train anomaly detectors that can
then be deployed in the target device to monitor their
detection and timing performance.

Each step is detailed in Sections 4.2 to 4.5.

4.1 Dealing with Common Pitfalls
Before getting into details, we want to make sure that our

methodology is free from obvious pitfalls, or to adequately
mitigate the issues that are likely to arise in our process. To
accomplish that, we refer to the paper [1], which lists 10
pitfalls that are likely to impact studies as this one. We report
each pitfall in Table I, discussing if and how likely it may be
to impact any of our steps S1 to S4, and mitigations to avoid
pitfalls posing threats to the validity of our study. Notably,
the pitfalls are mostly related to the data analysis and machine
learning processes, which happen in S4. However, the
successful mitigation of those pitfalls is due to actions that
need to be taken in earlier steps (S1 – S3) as well. Therefore,
these pitfalls are cross-cutting to our process and thus highly
representative.

4.2 S1 – An Error Model for Linux-Based Devices
Detecting anomalies assumes the knowledge and

characterization of how the system behaves normally [13],
but benefits also from information about the effects of
potential faults or attacks (i.e., errors [14]) that may impact

Figure 2. An instance of a board in the ARANCINO family,
depicting its layout and mapping it to the main components as

identified in Figure 1

27

the target system. Therefore, we contacted the stakeholder to
discuss how the target ARANCINO device was made,
potential vulnerabilities, the existence of bottlenecks, and
relevant software or communication channels. Then, we
scanned the literature to seek for error models that apply to a
Linux-based embedded system / IoT device [8], [9], [10].
There is an overall agreement about the high likelihood of
one of the following events happening in a Linux-based OS.

Resource consumption: either CPU, primary and
secondary memory may be filled/exhausted by malicious
or malfunctioning software.
Deadlock: critical sections are heavily used in any multi-
threading context. Shallow management of locks or
semaphores may end up generating deadlocks and make
the regular execution flow deviate from expectations.
Unexpected usage of the network, in both directions.

On top of that, we consider that ARANCINO devices
heavily rely on the Redis [4] database: therefore, we also
consider erroneous usages of the Redis database, which we
simulate as subsequent reads / write operations. Lastly, we
disturb the regular usage of key processes that manage the
overall device, namely the arancino and node-red Raspbian

processes, and make them stuck for some time to simulate
their potential malfunction.

This leads to a total of 8 different errors (CPU usage, RAM
usage, Disk Usage, Deadlock, Redis read, Redis write, Stuck
arancino, Stuck node-red) that we will inject into our device,
monitoring its behavior in the process. We believe that this
set of errors is rather extensive and refers to different
modules, processes, and software components. Obviously, it
may not be complete, but we believe it is good enough to
successfully address and mitigate pitfall P1 and, to a lesser
extent, P10.

4.3 S2 – A Lightweight Monitor for Linux-based Devices
We first looked for existing software with the following

requirements:
lightweight;
customizable regarding sampling interval and the system
indicators to observe;
able to instrument different layers and components of the
target system;
compatible with the Raspbian 9 Stretch system, the OS
running on the ARANCINO devices. This means that the

Table I. Pitfalls for machine learning in computer security, from [1], mapping to the steps of our methodology, and mitigations to be
applied to avoid the occurrence of each pitfall in our study.

Pitfall (from [1]) S1 S2 S3 S4 Mitigation

P1 – Sampling Bias. The collected data does not sufficiently
represent the true data distribution of the underlying problem ✓ ✓ ✓

The error model should cover a wide range of
performance anomalies that may happen in the target

device. Also, the monitoring system should gather
information from different areas of the system to have a

complete view of the problem
P2 – Label Inaccuracy. The ground-truth labels required for
classification tasks are inaccurate, unstable, or erroneous,
affecting the overall performance of a learning-based system

✓
Our system monitoring campaign should annotate the

timeframe in which each error is injected into the system,
allowing precise and flawless labeling.

P3 – Data Snooping. A learning model is trained with data
that is typically not available in practice. n.r. n.r. n.r. n.r.

Our monitoring campaign is exercised on a real device
that is currently used in many scenarios: therefore, this

pitfall is irrelevant for our study.

P4 – Spurious Correlations. Artifacts unrelated to the
problem create shortcut patterns for separating classes. ✓ ✓

Our monitoring system should avoid gathering features
that contain information about the experimental setup

rather than information on the detection problem itself.
P5 – Biased Parameter Selection. The final parameters of a
learning-based method are not entirely fixed at training time.
Instead, they indirectly depend on the test set.

 ✓ The test set is clearly separated from the training set, with
no overlaps.

P6 – Inappropriate Baseline. The evaluation is conducted
without, or with limited, baseline methods. ✓

Albeit a complete benchmark is not the main aim of the
paper, we will compare the detection and timing
performance of 9 supervised anomaly detectors.

P7 – Inappropriate Performance Measures. The chosen
performance measures do not account for the constraints of
the application scenario, such as imbalanced data or the need
to keep a low false-positive rate

 ✓
We are aware that common metrics such as accuracy or

F1-Score should be disregarded [2] when evaluating
binary classifiers that detect performance anomalies in
IoT devices. Those are expected to perform regularly,

and only rarely encounter problems (thus the real-world
data they face is skewed and unbalanced towards normal

data).

P8 – Base Rate Fallacy. A large class imbalance is ignored
when interpreting the performance measures leading to an
overestimation of performance.

 ✓
P9 – Lab-Only Evaluation. A learning-based system is solely
evaluated in a laboratory setting, without discussing its
practical limitations.

 ✓
This paper conducts a lab-only evaluation. However, we

try mitigating this problem by conducting system
monitoring under different operating conditions.

P10 – Inappropriate Threat/Error Model. The security of
machine learning is not considered, exposing the system to a
variety of attacks, such as poisoning and evasion attacks.

✓ ✓
This study does not account for adversarial attacks to the
anomaly detector. However, we make sure that our error

model is as much correct and complete as possible.

28

tool must be written either in C/C++ (gcc 7.x), Python
<= 3.5.3, or Java (v. 8 openJDK).

Unfortunately, we did not find any good fit for that: as
such, we coded a monitor ourselves, and made it publicly
available through a public GitHub repository [3]. The
monitor is written in Python 3.5.3, featuring a total of 7
probes, that can be activated at will:

Network (32 features): reads data from the system file
/proc/net/dev
Chip temperature (1 feature): reads data from the system
file /sys/class/thermal/thermal_zone0/temp
Virtual Memory (116 features): reads data from the
system file /proc/vmstat
Memory Info (38 features): reads data from the system
file /proc/meminfo
IO Stats (6 features): uses the iostat Linux package and
parses its textual output.
Python Indicators (55 features): uses the psutil functions
cpu_times, cpu_stats, getloadavg, swap_memory,
virtual_memory, disk_usage, disk_io_counters,
net_io_counters.
Redis DB (25 features): accesses to Redis performance
indicators through the redis-py Python wrapper

The reader should note that this monitor has only minimal
dependencies and thus can be installed without requiring to
download additional libraries. For further information, please
refer to the documentation available at [3]. Also, it activates
a single process in the target device, making it easy to control
for intrusiveness, which is a major concern when setting up
this type of study. Ideally, a monitor should observe the
performance indicators of a system without impacting it [15]:
however, this is possible only in restricted scenarios e.g.,
network monitoring using an external device connected to the
network. Conversely, we need to deploy the monitoring
software to the target device, partially using the resources that
we are going to monitor with the software itself. Therefore,
our monitor will unavoidably gather information that is
affected by the fact that the monitor itself is running and using
the device’s resources. However, this does not represent a
problem nor creates spurious correlations (pitfall P4) for the
following two reasons. Firstly, the activity of the monitor is
constant over time: therefore, the added load is semi-constant
such that it can be considered background noise. Secondly,
the monitor is always active in our experiments: therefore, it
will affect all data we gather in the same way and will not
make any difference with respect to the boundaries between
normal and anomalous behavior.

4.4 S3 - Injecting Errors to Collect Labeled Data
The definition of the error model and the monitoring

system paves the way for an experimental campaign in which
we equip the ARANCINO with the monitoring system that
samples data every second, and let it do its business as usual.
This provides a data baseline that we can use to characterize
the normal behavior of the device. Additionally, we perform
random injections of each of the 8 errors in Section 4.2,

keeping the monitoring system in place. This provides data
about how the ARANCINO device reacts to errors (i.e., the
anomalies due to different root causes), which we label
accordingly. Our experimental setup activates an injection
with 5% of probability. The error to inject is randomly chosen
out of the 8 available in our error model. Once activated, the
injection remains active for 5 seconds; then, we manually
deallocate as best as we can the resources used for the
injection and wait a total of 10 seconds of cooldown. During
cooldown it is not possible to activate new injections,
providing the device with some time to repair itself (e.g.,
garbage collection, freeing up zombie processes, de-
allocating resources that were used by the injection and that
could not be manually freed, and so on).

This methodology provides a very precise and reliable
way of gathering labeled data without any inconsistencies
(thus avoiding pitfall P2). On the other hand, the reader may
argue about the representativeness of the data we collect with
respect to the behavior of a device that is meant to be used in
different setups as an edge component of an IoT system, or
as a smart sensor. Conducting experiments in which the
ARANCINO is performing the same task in the same
network topology, with the same operating conditions and
workload may heavily bias the data we have and thus skew
the detecting phase (pitfall P9). There are no means to avoid
this problem at all: we mitigate it by exercising experiments
in the following 3 environmental setups:

uni-env (69000 observations): the device is connected to
a WiFi network at the premises of our university; the
network is shared by many devices and features a non-
trivial topology.
home-env (72000 observations): the device is connected
to a WiFi network in a flat of a residential building,
where only a few devices are admitted to access the
network. It is directly connected to the router (no
intermediate switches) and to the FTTC private fiber
network.
out-env (13000 observations): the device is positioned
outdoors and connected to a private WiFi network (i.e.,
tethering from a mobile connection) providing
connectivity to two nodes at all times.

This leads to the creation of 4 separate labeled datasets
[52] composed of the timestamp, i.e., a long int in ms, 276
features from the monitoring system, and a label i.e., normal
or any of the 8 errors: a dataset for each scenario above, and
a fourth dataset which merges the first 3 datasets (all-env,
composed of 154000 observations).

4.5 S4 - Anomaly Detectors
A labelled dataset enables the usage of any supervised ML

algorithm for detecting performance anomalies. This opens
doors to a plethora of different experiments and comparisons
about the detection performance among a multitude of
algorithms. Particularly, literature tells that the de-facto
standard approach for processing tabular datasets (as ours
actually is) consists in employing tree-based ML algorithms,

29

which typically outperform neural networks, even those that
are being repurposed explicitly to classify tabular data [11].
Additionally, we are interested in selecting a subset of
classifiers that are as heterogeneous as possible to avoid
exercising many classifiers which will result in very similar
outcomes (see pitfall P6). We favor classifiers that require
minimal parameter tuning to avoid conducting random or
grid searches which would add yet another dimension of
analysis and expose to pitfall P5.

Therefore, we selected the statistical Gaussian, Bernoulli
and Multinomial Naïve Bayes [20], a Perceptron, the Logistic
Regression [18], as well as the tree-based Decision Tree [23],
Random Forest [22] and Gradient Boosting [17], whose
implementations are all made available in the Scikit-Learn
Python package. Remember that we are constrained to using
Python 3.5.3, which locks the Scikit-Learn version to 0.22.1
(3 years old and missing recent algorithms and features).
Also, we do not consider classifiers that have an O(n2) usage
of memory, since they make the training process fail due to
insufficient memory. Thus, algorithms such as Linear [19]
and Quadratic [16] Discriminant Analysis, Support Vector
Machines [18] and any neural network other than the single-
layer perceptron are out of the picture. Also, we avoid the
usage of K-th Nearest Neighbors [21], which even with the
kd-tree enhanced neighbor search requires an exceedingly
high O(log n) amount of time to decide on anomalies and thus
cannot be applied as an anomaly detector for the
ARANCINO. Overall, we select 9 algorithms that perform
well with default parameter values: however, for ensemble
classifiers as random forests and gradient boosting, where the
number of estimators has a huge impact on resource usage,
we create instances using 10, 30 and 100 estimators. This
leads the total of supervised algorithms to 13: gaussian naïve
bayes (gnb), Bernoulli naïve bayes (bnb), multinomial naïve
bayes (mnb), perceptron (mlp), logistic regression (lr),
decision tree (dt), stochastic gradient descend (sgd), random
forest with 10, 30 and 100 trees (rf10, rf30, rf100), gradient
boosting with 10, 30, and 100 decision stumps (gb10, gb30,
gb100).

We want ML algorithms to act as anomaly detectors:
therefore, we will convert the 9-class label of the datasets in
S3 to a binary label, i.e., normal against others. Also, we
preprocess datasets to remove hidden labels and constant
columns that represent useless features. This leads to a set of
119 (out of the initial 276) non-trivial features to be used for
detection in each dataset. Once everything is set, we run each
of the 13 supervised classifiers on each of the 4 datasets (for
a total of 52 models), and test against all 4 datasets as well.
Noticeably, there is a general agreement that ML algorithms
should not be necessarily trained on edge or in any other
device that has strong resource constraints, whenever
possible. In this situation, the model is trained somewhere
else, and the resulting model is then sent to the target device,
deployed and ready to use at runtime. However, there may be
situations in which this is not feasible due to reasons such as
data privacy, or specific system architectures (e.g., a

federated learning scenario [45]). Therefore, we will train and
test anomaly detectors on the device itself.

We measure the detection performance of each model
through the confusion matrix (i.e., TP, TN, FP, FN),
Precision (P), Recall (R, or coverage), False Positive Rate
(FPR), Accuracy (ACC) and Matthews Correlation
Coefficient (MCC). MCC is robust to unbalanced datasets
and as such nice to pair with accuracy to address pitfalls P7
and P8. To guarantee independence between train and test
sets, we proceed to a 70-30 train-test split of each dataset. The
summary of this process is in Figure 3.

5 EXPERIMENTAL RESULTS AND DISCUSSION

This section shows the experimental results related to the
training (Section 5.1) and testing phase (Section 5.2) of
anomaly detectors on the target ARANCINO device.

5.1 Training Anomaly Detectors
We first analyze the training phase of anomaly detectors.

Figure 4 plots train time (in seconds) against model size (in
KBs) of each of the 13 anomaly detectors trained using all-
env, out-env, uni-env datasets. Results using home-env do

Figure 4. Plotting train time (seconds) against model size (in KB)
of each anomaly detector trained using each of the 4 datasets.

Results using home-env do not appear here as they overlap with
those of uni-env. Logarithmic scale for both axes.

Figure 3. The process of training and testing anomaly detectors in
this paper.

30

not appear in the figure as they overlap with those of uni-env.
Let us focus on the horizontal axis: the more we go to the
right, the slower the training process. As expected, most of
the items on the right of the plot correspond to detectors
trained using all-env and uni-env datasets, which contain
many more data points than out-env. The difference may not
seem relevant, but the reader should consider that the plot has
logarithmic scale on both axes. There is another important
trend: gradient boosting and random forest detectors are
always more on the right with respect to other detectors
trained using the same dataset, whereas the naïve bayes
detectors are always faster and hover on the left of the picture.
The vertical axis of Figure 4 instead depicts the size of the
models at the end of the training phase, which follow a
similar trend with respect to the train time. Overall, it is safe
to say that the detectors that require more time to train are
also the ones that output a heavier model. This may not seem
surprising, but it is not a trivial observation: we can observe
how logistic regression lr does not exactly follow this trend,
as it produces a few KB of model, but requires far more time
than fast detectors such as the naïve bayes gnb, bnb, mnb.

5.2 Testing Anomaly Detectors
Another important discussion regards the performance of

anomaly detectors both from a classification and timing
viewpoint. We expand on this item with the aid of Figure 5,
which plots test time (in milliseconds) against MCC of each
anomaly detector tested against home-env dataset. Depicting
results when testing all detectors on all datasets would have
made the plot completely unreadable, thus we selected a
single test dataset. Other results are in the repository at [52].
The scatterplot may still seem hardly readable due to the high
count of items and labels, yet it provides the following key
insights.

All detectors can classify a single data point in at most
167 ns (0.167 ms), which is very fast and thus does not

represent a timing bottleneck when deploying these
algorithms on the ARANCINO.
Up in the picture (i.e., high MCC and thus good detection
performance) we exclusively find yellow circles: there is
no detector trained using all-env, out-env, uni-env that
has an MCC higher than 0.6 when tested against home-
env. High MCCs are achieved by detectors trained and
tested on different partitions of the same home-env
dataset, meaning that each of the 4 dataset is slightly
different from others, and that models do not always
generalize well when train and test sets come from
different datasets.
Overall, rf and gb classifiers have a better MCC than
other detectors when dealing with the same dataset. Also,
only rf and gb detectors reach and surpass MCC = 0.5, a
result that shows there is still room for improvement.

The reader may have expected that using all-env as
training set would have provided a more complete and robust

Figure 5. Plotting test time (milliseconds) against MCC of
anomaly detectors trained using home-env(yellow dots), uni-env
(blue squares), out-env (green marks), all-env (orange triangles)
and tested against the same home-env dataset. Logarithmic scale

for horizontal axis.

Table II. Timing and Classification performance of bnb, lr, gb10, rf100 detectors trained on different datasets and tested against home-
env. Classification metrics are paired with arrows that specify if we want the metric to be high (↑) or low (↓).

clf Train dataset time (ns) (↓) ACC (↑) MCC (↑) TP (↑) TN (↑) FP (↓) FN (↓) FPR (↓) P (↑) R (↑)

St
at

is
tic

al

bnb

all-env 6.1 0.844 0.271 387 17850 3309 54 0.156 0.105 0.878
home-env 6.0 0.845 0.275 384 17862 3312 42 0.156 0.104 0.901
out-env 6.2 0.171 0.000 3696 0 0 17904 n.a. 1.000 0.171
uni-env 6.0 0.844 0.271 384 17853 3312 51 0.156 0.104 0.883

lr

all-env 2.0 0.874 0.476 1037 17844 2659 60 0.130 0.281 0.945
home-env 1.9 0.905 0.627 1864 17680 1832 224 0.094 0.504 0.893
out-env 1.8 0.397 0.114 3066 5504 630 12400 0.103 0.830 0.198
uni-env 2.0 0.864 0.477 1786 16878 1910 1026 0.102 0.483 0.635

Tr
ee

-b
as

ed
 E

ns
em

bl
es

gb10

all-env 11.0 0.893 0.576 1391 17899 2305 5 0.114 0.376 0.996
home-env 11.4 0.908 0.645 1746 17873 1950 31 0.098 0.472 0.983
out-env 11.0 0.895 0.582 1674 17664 2022 240 0.103 0.453 0.875
uni-env 11.1 0.893 0.575 1391 17896 2305 8 0.114 0.376 0.994

rf100

all-env 131.2 0.897 0.591 1627 17752 2069 152 0.104 0.440 0.915
home-env 167.0 0.976 0.915 3226 17864 470 40 0.026 0.873 0.988
out-env 107.4 0.704 0.301 2485 12717 1211 5187 0.087 0.672 0.324
uni-env 121.1 0.786 0.354 2107 14863 1589 3041 0.097 0.570 0.409

31

model that consequently would have had the highest metric
scores on any test set. However, the all-env dataset includes
data from different experimental setups that (slightly) differ
from each other and may represent an heterogeneous baseline
that constitutes noise instead of helping to build a more robust
model. In our case, training using all-env is not detrimental,
but also not really beneficial when looking at metric scores.

For completeness, Table II reports the classification
metrics related to some of the detectors in Figure 5. We show
all classification metrics and the time to predict the label of a
data point related to statistical anomaly detectors bnb and lr,
and to ensembles of decision trees gb10 and rf100. There are
4 rows for each anomaly detector, reporting scores related to
each of the 4 train datasets tested against the same home-env.
Starting from the time(ns) column, we can observe how the
statistical detectors are clearly faster than tree-based gb and
rf. The time needed by rf100 is far higher than its
competitors: this is not strictly due to the algorithm, but to the
number of trees (100) in the forest. The reader can notice that
the time needed by gb10 is clearly faster, but this is because
the gb10 detector is an ensemble of 10 weak learners, a tenth
of the trees in the rf100.

We then switch our focus to classification metrics, with
Accuracy (ACC) being the most used typically. We see that
ACC scores of the statistical detectors are inferior with
respect to those of tree-based ensembles, which is expected
as the latter are conceived to output a low number of
misclassifications. The trend holds when looking at different
metrics, which keep showing better results overall when
using tree ensembles. We want to point out how the same
algorithm trained with different training sets has very
different detection performance when tested against the same
test set: this is particularly evident for bnb, lr and rf100,
which have very poor detection performance when trained
using the out-env dataset. This is due to the training dataset
not being informative enough or due to the algorithm not
learning a model which generalizes well to datasets collected
in similar (yet not identical) operating conditions. Instead, the
classification performance of gb10 is very similar across the
4 test datasets, because it builds a robust model that does not
suffer from the problem above mentioned.

6 ON TIME SERIES ANALYSIS

However, Table C raises an important discussion item:
even gb10 - which has the most consistent classification
performance out of all the detectors in this paper – still
outputs several misclassifications which may be considered
high in most cases. Particularly, an accuracy of roughly 90%
means that one observation out of 10 will be misclassified,
most likely as a false positive (i.e., low precision, very high
recall). This generates several false alarms which may be
considered unfeasible for practically deploying anomaly
detectors in the ARANCINO device as it will trigger too
many unnecessary investigations to diagnose a problem that
in fact does not exist.

There seem to be straightforward ways to deal with this
problem: just generate a bigger training dataset or try more
algorithms and more configuration of hyperparameters to
find the sweet spot that maximizes the classification
performance. However, the detectors we trained up to this
moment are not exploiting the fact that the behavior of the
target device is meant to (gracefully) evolve through time.
Instead, we are labeling data points in the test set solely
relying on each of them separately, instead of making a
prediction based on the current observation plus the way
feature values evolved in the (recent) past. In other words, we
clearly want to classify data points in time series, but we are
neglecting this property ourselves by using ML algorithms
that perform classification without the notion of time
ordering.

For the sake of brevity, we cannot discuss the time-series
approach within the size of this paper; instead, we list below
the approaches we are currently planning to and currently
using to enhance classification performance of the anomaly
detectors.

Using ML algorithms that are naturally meant to process
time series as anomaly detectors. This approach is
straightforward, but it carries an important problem:
algorithms such as LSTM [46] employ convolutional
neural networks, which are typically considered some of
the heaviest classifier to train and test, and as such do not
pair well with resource-constrained environments such
as small embedded devices or edge devices.
Hand-crafting new features that carry time-series
information. For example, if an existing feature is
“percentage of RAM used”, we may be interested in
deriving features as “difference in percentage of RAM
used with respect to the previous observation”, or similar
others. This does not put constraints on the ML
algorithms to use but creates anomaly detectors that rely
on many more features and as such may be slower to
exercise.
Exploring specific approaches, e.g., bag-of-features
[47], complex temporal features [48], feature fusion [49],
Gaussian Process Regression [60] and, more
importantly, distance-based [50] features, which may be
global, local or embedded depending on the way they are
computed.

7 CONCLUSIONS

This paper presented a methodology for bringing Machine
Learning (ML) into resource-constrained devices to provide
them with means to detect behavioral anomalies and thus be
self-aware of their health status. We presented a general
methodology that may be applied to any edge, embedded or
IoT device which runs a Linux-based OS (indeed, the vast
majority on the market), describing common pitfalls and how
our methodology is robust with regard to these. Then, we
showed an application of the methodology targeting
ARANCINO devices, which are equipped with sensors, an
MCU, and a Raspbian-derived OS that puts everything

32

altogether and provides connection primitives and basic OS
services. This allowed ARANCINOs to find wide application
in different domains such as smart cities, environmental and
transportation monitoring: however, enabling them to auto-
detect behavioral anomalies may actually make these devices
genuinely unique on the market.

Applying our methodology helped us collect datasets
about the behavior of the ARANCINO device, injecting
performance anomalies and observing how the device reacts.
Those datasets were used to train and test ML algorithms
suitable for binary classification and thus excellent at
detecting anomalies. However, those algorithms do not
consider data as time-ordered series, and as such cannot
precisely define the evolution of the context. Therefore, as a
future work, we are and will be exploring and experimenting
with time-series analysis, which we expect to have a
beneficial impact on the whole classification task,
particularly in lowering false alarms and improving our
overall detection performance.

ACKNOWLEDGMENTS

This work was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and
Resilience Plan funded by the European Union -
NextGenerationEU.
We also thank Maurizio Giacobbe, Nicola Peditto and Fabio
Verboso from SmartME for the fruitful discussions and
technical support.

REFERENCES

[1] Arp, D., Quiring, E., Pendlebury, F., Warnecke, A.,
Pierazzi, F., Wressnegger, C., ... & Rieck, K. (2022). Dos
and don'ts of machine learning in computer security. In
31st USENIX Security Symposium (USENIX Security
22) (pp. 3971-3988).

[2] Chicco, D., & Jurman, G. (2020). The advantages of the
Matthews correlation coefficient (MCC) over F1 score
and accuracy in binary classification evaluation. BMC
genomics, 21, 1-13.

[3] Monitor GitHub (online),
https://github.com/tommyippoz/arancino-monitor

[4] Carlson, J. (2013). Redis in action. Simon and Schuster.
[5] Murshed, M. S., Murphy, C., Hou, D., Khan, N.,

Ananthanarayanan, G., & Hussain, F. (2021). Machine
learning at the network edge: A survey. ACM
Computing Surveys (CSUR), 54(8), 1-37

[6] Zhu, G., et. al. (2020). Toward an intelligent edge:
Wireless communication meets machine learning. IEEE
communications magazine, 58(1), 19-25.

[7] Merenda M, Porcaro C, Iero D. (2020). Edge machine
learning for ai-enabled iot devices: A review. Sensors,
20(9), 2533

[8] Koopman, P., Sung, J., Dingman, C., Siewiorek, D., &
Marz, T. (1997, October). Comparing operating systems

using robustness benchmarks. In Proceedings of
SRDS'97: 16th Symp. on Reliable Distributed Systems
(pp. 72-79). IEEE.

[9] Zoppi, T., Ceccarelli, A., Bondavalli, A. (2019).
MADneSs: A multi-layer anomaly detection framework
for complex dynamic systems. IEEE Transactions on
Dependable and Secure computing, 18(2), 796-809.

[10] Chou, A., Yang, J., Chelf, B., Hallem, S., & Engler, D.
(2001, October). An empirical study of operating
systems errors. Proc of the 18th ACM Symp. on OS
principles (pp. 73-88).

[11] Gorishniy, Y., et. al. (2021). Revisiting deep learning
models for tabular data. Advances in Neural Information
Processing Systems, 34, 18932-18943.

[12] Giacobbe, M., Alessi, F., Zaia, A., & Puliafito, A.
(2020). Arancino.cc™: an open hardware platform for
urban regeneration. International Journal of Simulation
and Process Modelling, 15(4), 343-357

[13] Chandola, V., Banerjee, A., & Kumar, V. (2009).
Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3), 1-58

[14] Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C.
(2004). Basic concepts and taxonomy of dependable and
secure computing. IEEE transactions on dependable and
secure computing, 1(1), 11-33.

[15] Spanoudakis, G., & Mahbub, K. (2006). Non-intrusive
monitoring of service-based systems. International
Journal of Cooperative Information Systems, 15(03),
325-358.

[16] Srivastava, S., Gupta, M. R., & Frigyik, B. A. (2007).
Bayesian quadratic discriminant analysis. Journal of
Machine Learning Research, 8(Jun), 1277-1305.

[17] Chen, T., & Guestrin, C. (2016, August). Xgboost: A
scalable tree boosting system. In Proceedings of the 22nd
acm sigkdd international conference on knowledge
discovery and data mining (pp. 785-794).

[18] Robles-Velasco, A., Cortés, P., Muñuzuri, J., & Onieva,
L. (2020). Prediction of pipe failures in water supply
networks using logistic regression and support vector
classification. Reliability Engineering & System Safety,
196, 106754

[19] Fisher, R. (1936). Linear discriminant analysis. Ann.
Eugenics, 7, 179.

[20] Rish, I. (2001, August). An empirical study of the naive
Bayes classifier. In IJCAI 2001 workshop on empirical
methods in artificial intelligence (Vol. 3, No. 22, pp. 41-
46).

[21] Liao, Y., & Vemuri, V. R. (2002). Use of k-nearest
neighbor classifier for intrusion detection. Computers &
security, 21(5), 439-448.

[22] Breiman, Leo. "Random forests." Machine learning 45
(2001): 5-32.

33

[23] Patel, H. H., & Prajapati, P. (2018). Study and analysis
of decision tree based classification algorithms.
International Journal of Computer Sciences and
Engineering, 6(10), 74-78.

[24] Hearst, Marti A., et al. "Support vector machines." IEEE
Intelligent Systems and their Applications 13.4 (1998):
18-28.

[25] Liao, Yihua, and V. Rao Vemuri. "Use of k-nearest
neighbor classifier for intrusion detection." Computers
& Security 21.5 (2002): 439-448.

[26] Srivastava, S., Gupta, M. R., & Frigyik, B. A. (2007).
Bayesian quadratic discriminant analysis. Journal of
Machine Learning Research, 8(Jun), 1277-1305.

[27] Zhang, C., Jia, D., Wang, L., Wang, W., Liu, F., & Yang,
A. (2022). Comparative Research on Network Intrusion
Detection Methods Based on Machine Learning.
Computers & Security, 102861.

[28] Zhu, Y., Brettin, T., Xia, F., Partin, A., Shukla, M., Yoo,
H., & Stevens, R. L. (2021). Converting tabular data into
images for deep learning with convolutional neural
networks. Scientific reports, 11(1), 1-11.

[29] Shwartz-Ziv, R., & Armon, A. (2022). Tabular data:
Deep learning is not all you need. Information Fusion,
81, 84-90.

[30] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., & Chen, Z.
(2021). SySeVR: A framework for using deep learning
to detect software vulnerabilities. IEEE Transactions on
Dependable and Secure Computing, early access article.

[31] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep
learning. Nature, 521(7553), 436-444.

[32] Sathya, R., & Abraham, A. (2013). Comparison of
supervised and unsupervised learning algorithms for
pattern classification. International Journal of Advanced
Research in Artificial Intelligence, 2(2), 34-38.

[33] Lee, K., Booth, D., & Alam, P. (2005). A comparison of
supervised and unsupervised neural networks in
predicting bankruptcy of Korean firms. Expert Systems
with Applications, 29(1), 1-16.

[34] Zhao, Zilong, Sophie Cerf, Robert Birke, Bogdan Robu,
Sara Bouchenak, Sonia Ben Mokhtar, and Lydia Y.
Chen. "Robust anomaly detection on unreliable data." In
2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 630-
637. IEEE, 2019.

[35] Robles-Velasco, A., Cortés, P., Muñuzuri, J., & Onieva,
L. (2020). Prediction of pipe failures in water supply
networks using logistic regression and support vector
classification. Reliability Engineering & System Safety,
196, 106754.

[36] do Nascimento, P. P., Pereira, P., Mialaret, J. M.,
Ferreira, I., & Maciel, P. (2021). A methodology for
selecting hardware performance counters for supporting

non-intrusive diagnostic of flood DDoS attacks on web
servers. Computers & Security, 110, 102434.

[37] Domenico Cotroneo, Roberto Natella, and Stefano
Rosiello. 2017. A fault correlation approach to detect
performance anomalies in Virtual Network Function
chains. In Software Reliability Engineering (ISSRE),
2017 IEEE 28th Int. Symposium on. IEEE, 90–100.

[38] Cruz, T., Barrigas, J., Proença, J., Graziano, A., Panzieri,
S., Lev, L., & Simões, P. (2015, May). Improving
network security monitoring for industrial control
systems. In 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM) (pp. 878-881)
IEEE.

[39] Al, S., & Dener, M. (2021). STL-HDL: A new hybrid
network intrusion detection system for imbalanced
dataset on big data environment. Computers & Security,
110, 102435.

[40] He, P., Zhu, J., He, S., Li, J., & Lyu, M. R. (2017).
Towards automated log parsing for large-scale log data
analysis. IEEE Transactions on Dependable and Secure
Computing, 15(6), 931-944.

[41] Chou, D., & Jiang, M. (2021). A survey on data-driven
network intrusion detection. ACM Computing Surveys
(CSUR), 54(9), 1-36.

[42] Zoppi, T., Ceccarelli, A., Puccetti, T., & Bondavalli, A.
(2023). Which Algorithm can Detect Unknown Attacks?
Comparison of Supervised, Unsupervised and Meta-
Learning Algorithms for Intrusion Detection. Computers
& Security, 103107.

[43] Boughorbel, Sabri, Fethi Jarray, and Mohammed El-
Anbari. "Optimal classifier for imbalanced data using
Matthews Correlation Coefficient metric." PloS one 12.6
(2017): e0177678.

[44] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B.
Micenko-va, E. Schubert, I. Assent, and M. E. Houle,
“On the evaluation of outlier detection: Measures,
datasets, and an empirical study”, in Lernen, Wissen,
Daten, Analysen 2016. CEUR workshop proceedings,
2016.

[45] Sater, R. A., & Hamza, A. B. (2021). A federated
learning approach to anomaly detection in smart
buildings. ACM Transactions on Internet of Things,
2(4), 1-23.

[46] Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2017).
LSTM fully convolutional networks for time series
classification. IEEE access, 6, 1662-1669.

[47] Baydogan, M. G., Runger, G., & Tuv, E. (2013). A bag-
of-features framework to classify time series. IEEE
transactions on pattern analysis and machine
intelligence, 35(11), 2796-2802.

[48] Ji, C., Du, M., Hu, Y., Liu, S., Pan, L., & Zheng, X.
(2022). Time series classification based on temporal
features. Applied Soft Computing, 128, 109494.

34

[49] Wang, T., Liu, Z., Zhang, T., Hussain, S. F., Waqas, M.,
& Li, Y. (2022). Adaptive feature fusion for time series
classification. Knowledge-Based Systems, 243, 108459.

[50] Abanda, A., Mori, U., & Lozano, J. A. (2019). A review
on distance based time series classification. Data Mining
and Knowledge Discovery, 33(2), 378-412.

[51] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge
computing: Vision and challenges. IEEE internet of
things journal, 3(5), 637-646.

[52] Repository of datasets and experimental results (online),
https://drive.google.com/file/d/1E7PYMnUKVqLTEzP
kIKtxXidjDXdymTm9/view?usp=sharing

[53] Bruneo, D., Distefano, S., Longo, F., Merlino, G., &
Puliafito, A. (2018). I/Ocloud: adding an IoT dimension
to Cloud infrastructures. Computer, vol. 51, no. 1, pp.
57-65, January 2018, doi: 10.1109/MC.2018.1151016.

[54] Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao,
W. (2017). A Survey on Internet of Things: Architecture,
Enabling Technologies, Security and Privacy, and
Applications. IEEE Internet of Things Journal, 4(5),
1125–1142. https://doi.org/10.1109/JIOT.2017.2683200

[55] Yi, S., Hao, Z., Qin, Z., & Li, Q. (2020). Edge Cloud
Computing in the Internet of Things. IEEE Internet of
Things Journal, 7(5), 3969–3982.
https://doi.org/10.1109/JIOT.2020.2967584

[56] Naha, R. K., Garg, S., Georgakopoulos, D., Jayaraman,
P. P., Gao, L., Xiang, Y., & Ranjan, R. (2019). Fog
Computing: Survey of Trends, Architectures,
Requirements, and Research Directions. IEEE Access, 7,
99983–10009.
https://doi.org/10.1109/ACCESS.2019.2936871

[57] Belkhir, L., & Elmeligi, A. (2020). Assessing ICT global
emissions footprint: Trends to 2040 &
recommendations. Journal of Cleaner Production, 177,
448–463. https://doi.org/10.1016/j.jclepro.2017.12.239

[58] Mahmud, R., Kotagiri, R., & Buyya, R. (2018). Fog
Computing: A Taxonomy, Survey and Future
Directions. In Internet of Everything (pp. 103–130).
Springer, Singapore. https://doi.org/10.1007/978-981-
10-5861-5_5

[59] Puliafito, C., Mingozzi, E., Vallati, C., Longo, F., &
Merlino, G. (2018). Virtualization and Migration at the
Network Edge: An Overview. In 2018 IEEE
International Conference on Smart Computing
(SMARTCOMP), Taormina, Italy, 2018, pp. 368-374,
doi: 10.1109/SMARTCOMP.2018.00031.

[60] Bock, C., Aubet, F. X., Gasthaus, J., Kan, A., Chen, M.,
& Callot, L. (2022). Online time series anomaly
detection with state space gaussian processes. arXiv
preprint arXiv:2201.06763.

35

