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Abstract — With the growing processing power of 
computing systems and the increasing availability of massive 
datasets, machine learning algorithms have led to major 
breakthroughs in many different areas. This applies also to 
resource-constrained IoT and edge devices, which will often 
benefit from relatively small – but smart – local anomaly 
detection tasks that aim at protecting the device, or the 
information they convey from sensors towards a central node. 
This provides the device with fault detection capabilities that
are typically required when engineering dependable devices, 
services or systems. This paper overviews a pitfall-free
process to provide small devices with anomaly detection 
capabilities, to make them self-aware of their health 
condition, and possibly take appropriate countermeasures. 
Our methodology applies to a wide range of Linux-based 
devices: we show an application to a specific ARANCINO 
device, which has already been successfully used in many 
smart cities and sensing applications. We craft anomaly 
detectors that are very effective in detecting most of the 
anomalies. Additionally, we comment on the beneficial 
impact of time-series analysis, which could help improve 
detection performance even further, allowing to equip any 
small device with responsive and accurate anomaly detection 
machinery.

Keywords – anomaly detection, iot, edge, monitoring, 
ARANCINO

1 INTRODUCTION

Edge learning refers to the deployment of Machine 
Learning (ML) algorithms at the network edge [6]. The key 
motivation of pushing learning toward the edge is to perform 
on-site preprocessing and filtering of data, as well providing
edge devices with sophisticated yet lightweight means to 
optimize their performance. Whereas the vast majority of 
studies on ML rely on lab setups for which we assume the 
availability of huge server farms, GPUs and any kind of 
accelerators (including FPGAs), deploying ML algorithms in 
the wild comes with obvious concerns [5], [6], [7]. Those are 
not to be intended as showstoppers but require a dedicated 
methodology to collect data, choose, train, test, and deploy
adequate ML algorithms on devices. 

It would often be desirable to bring ML algorithms in 
resource-constrained devices, which act as sensors, small 
embedded systems or controllers, or Internet-of-Things (IoT) 

devices in general. Those may find usage for a variety of 
purposes including – yet not limited to – load balancing, data 
preprocessing and cleaning, intrusion detection, or anomaly 
detection. In contrast to cloud computing, where processing 
and computation are centralized from a networking
perspective (even though servers may be physically 
distributed), deploying services on the edge of the network 
pushes a decentralized architecture for computing, storage, 
and connectivity that can drastically enhance real-time 
applications [51]. One of the critical requirements for any 
device is being aware of its behavior (i.e., self-awareness); 
this enables the device itself to act accordingly in case of 
issues, and label itself as malfunctioning or performing self-
diagnosis routines to identify the root cause (if any) of the 
behavioral anomalies in order to fix them.

Unfortunately, anomaly detection [13] is a complex data-
driven task that relies on i) collecting data about the normal 
behavior of the target system/device, and ii) use it for training 
Machine Learning (ML) algorithms that can find patterns on 
this data that are far from expectations: those will be labeled 
as anomalies. From a practical standpoint, data collection, 
training and testing ML algorithms create a very time-
consuming and resource-heavy task; thus, at the current state 
of the art, the problem of bringing ML to edge or resource-
constrained devices is still underdeveloped and needs further 
research [6].

This study brings ML-based anomaly detectors to 
resource-constrained devices for the high-level purpose of 
making devices self-aware about the correctness of their 
behavior, or of being under an attack or intrusion. This makes
devices able to monitor themselves, seek for potential 
performance anomalies due to errors or attacks, and activate 
diagnosis or recovery strategies whenever applicable.
Clearly, this process has to be free from obvious pitfalls [1]
that may have a detrimental impact on the entire process and 
will likely result in deploying a detector with doubtful 
usefulness. Examples include, but are not limited to: 
sampling bias, inaccurate threat/error model, inappropriate 
baseline or performance measures. We bring anomaly 
detectors into resource-constrained devices through 4
composite steps: i) identify the anomalies we seek to detect, 
ii) develop a lightweight monitor which is suitable for Linux-
based devices (publicly available at [3]), iii) a)conduct 
experimental analyses in which the normal behavior of a 
device is observed, and then b) inject errors while monitoring 
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performance indicators, and iv) a) use the collected data to 
train ML algorithms for anomaly detection, b) test their 
behavior and c) install the most performing learned model on 
the device.

We apply our methodology for deploying anomaly 
detectors for ARANCINO [12] devices and ultimately make 
them self-aware about their health state. Summarizing, the 
novelty of this work is very relevant for the business 
continuity of the smart city and crowdsensing applications 
where devices such as the ARANCINO are being adopted.
Indeed we:

Propose a methodology for bringing anomaly 
detectors (ML algorithms) into resource-constrained 
devices that applies to all Linux-based devices. 
Show how the methodology is free from pitfalls, and 
that resulting anomaly detectors are able to detect 
most of the performance anomalies, discussing 
potential improvements.
Provide source code for the monitor and the data 
analysis part, to increase the reproducibility of our 
results and provide ready-to-use means to bring our 
methodology over to other case studies.

The paper is structured as follows: Section 2 overviews 
related works and basics on IoT systems, where resource-
constrained devices are most widely adopted. Section 3 
overviews our target ARANCINO device, letting Section 4 
expand on our methodology aimed at bringing anomaly 
detectors to cyber-physical devices. Section 5 discusses our 
experimental results, whereas Section 6 goes through 
potential improvements of the detector through the 
application of methods for time-series analysis. Section 7 
concludes the paper. 

2 RELATED WORKS: BRINGING ML ON THE EDGE

This section overviews related work on IoT systems and edge 
devices, monitoring, anomaly detection and related metrics.

2.1 IoT Systems and Edge Devices
The Internet of Things (IoT) denotes a system of 

interconnected physical devices and objects that utilize the 
Internet to communicate and exchange data. These devices 
can range from everyday consumer products like smart home 
devices to industrial tools in factories [54].

Edge devices, on the other hand, represent the "edge" of 
the network, acting as entry points to the core network. Edge 
computing allows data processing to happen close to the data 
source, improving response times and saving bandwidth [55].

A significant challenge in developing software for IoT and 
edge devices is their inherent resource limitations. These 
devices often have constrained computational capabilities, 
storage, and power supplies [56]. This imposes a restriction 
on the complexity of software that can be developed and 
deployed, prompting the need for more efficient algorithms 
and compact data representation.

In addition, these devices often have stringent power 
requirements, given their portable nature or their remote, 

hard-to-reach locations. Hence, the software must be 
optimized for low power consumption [57].

Another challenge comes from the fragmented and rapidly 
evolving nature of IoT platforms, where available software 
libraries may not be up-to-date or standardized, hindering 
software portability and interoperability [58].

Countering limitations related to software fragmentation, 
when dealing with less resource-constrained edge devices, 
such as those capable of hosting comprehensively capable, 
and standardized, operating systems, e.g., *NIX-compatible, 
or better still, Linux-based environments, containerization 
technologies (and adjacent approaches) may help, by 
isolating [59] the application from the hosting environment,
and coupling interop efforts with container-powered 
deployment, i.e., CI/CD workflows’ design and maintenance.

2.2 Anomaly Detection
Detecting the activation of faults is a fundamental step to 

achieving fault tolerance and going toward dependable 
systems [14]. As a result, each device must be monitored to 
understand if its behavior complies with expectations, or if 
additional actions need to be completed to assure that the 
system is working properly. This activity requires the 
deployment of anomaly detectors, which identify patterns 
that do not conform to a well-defined notion of normal 
behavior [13]; anomalies may be the symptom of faults, 
attacks, or upcoming failures. Recent trends [27], [40], [41]
show how data-driven detection may provide effective and 
flexible means to detect anomalies, as opposed to traditional 
rule- and signature-based mechanisms. Data-driven detectors 
are usually implemented as binary classifiers (simply called 
classifiers in the rest of the paper), which are Machine 
Learning (ML) algorithms that assign either a positive or a 
negative class to each data point. The negative class is 
mapped to the normal class (no anomaly), whereas the 
positive class is known as the anomaly class. Ideally, an 
anomaly detector will be able to correctly classify the state of 
the device, minimizing misclassifications – either false 
alarms (False Positives, FP) or missed detection of anomalies 
(False Negatives, FN).

Literature and practice tell us that the vast majority of 
anomaly detectors for tabular data are implemented through 
supervised classifiers [25], [34]. They require training data 
for which the label is known and build a model that is usually 
accurate, i.e., only a few misclassifications occur. Well-
known families of supervised classifiers are: i) tree-based, 
mostly decision trees, ii) statistical techniques [26], iii) 
distance-based learners [25], iv) support vector machines 
[24], and deep neural networks (DNNs) [27], [30], [31].
DNNs are classifiers structured with many hidden layers and 
are the de facto standard for classifying unstructured data 
such as images, audio, lidar point clouds, and videos; 
however, they often struggle when classifying tabular data. 
For instance, recent works [27], [29], [30], [31], [42]
advocate that deep neural network classifiers applied to 
tabular data have worse classification performance than other 
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supervised classifiers. There are also studies that convert 
tabular data into images to fully exploit the potential of deep 
learners in processing images [28], but classification 
performance does not benefit much. On top of that, DNNs are 
heavy models that do not pair well with devices that have 
limited processing and storage resources, as is common for 
IoT devices.

Anomaly detectors can also be implemented using 
unsupervised classifiers, which do not require labels in the 
training data: they build their model under the assumption 
that anomalies due to hw/sw faults or ongoing attacks
manifest as observable deviations from the nominal behavior. 
This makes unsupervised classifiers applicable even when a 
labeled training set is not available; on the downside, they 
usually generate a higher number of misclassifications –
especially false positives – than supervised classifiers [32],
[33], and are beneficial only when unknown anomalies or 
zero-day attacks are a concern [42].

2.3 Monitoring IoT Devices and Embedded Systems
Anomaly detectors need to learn how the system behaves 

normally: the enabling knowledge to complete this process 
are the features that are continuously monitored from the 
target device. Features are usually obtained by monitoring the 
performance indicators of a device at the hardware or low 
level [36], system level [9], [39], input/sensor [35],
environment [37], application level (e.g., SCADA [38]) or 
even coding level [30]. Features can be textual or numeric: 
textual features (e.g., the name of a protocol) are always 
categorical, while numeric features may either be categorical 
(e.g., the ID of a system call) or describing an ordinal range 
of values, e.g., the percentage of memory used, or the number 
of packets received from the network interface in a time 
frame. Categorical features usually require preprocessing 
before being fed to a classifier. In fact, classifiers may 
compute algebraic calculus such as Euclidean distance [25]
or the estimation of angles in a multidimensional space, 
which delivers misleading results when processing 
categorical features. 

2.4 Metrics to Evaluate Anomaly Detectors
The classification performance of anomaly detectors is 

typically expressed using metrics [44] that compute correct 
classifications, True Positives (TPs) and True Negatives 
(TNs), and misclassifications, False-Positives (FPs) and 
False Negatives (FNs), respectively. These metrics are 
usually referred to as acan be aggregated into a wide variety 
of compound metrics, among others: False Positive Rate, 
Precision, Recall (or Coverage), and many others. In this 
paper, we will mostly use the following ones, which account 
for all 4 items of the confusion matrix and as such provide a 
balanced view on FPs and FNs..

Accuracy (ACC) calculates the percentage of correct 
classifications (TPs and TNs) over all classifications. 
Importantly, 1 - ACC is usually referred to as the 
misclassification rate.

Matthews correlation coefficient (MCC) [43] is 
particularly suited when the dataset is unbalanced [2], i.e., the 
occurrences of normal data points and anomalous data points 
are significantly different. This situation occurs quite 
frequently in the context of embedded systems or smart 
sensors, which are expected to behave as expected in most
cases, observing only a few exceptions over time.

3 ARANCINOS: ENABLING ML ON THE EDGE

ARANCINO™ [12] is the trade name for a family of IoT and 
embedded boards based on its namesake architecture. 
SmartMe.io (https://smartme.io), a startup company from 
Messina (southern Italy), conceived this architecture from the 
ground-up, off a composite mix of state-of-the-art open source 
(and open hardware) building blocks, and is routinely crafting 
Industry 4.0 and Smart City solutions, for its customers 
around the world, based on ARANCINO-compliant boards
exclusively. ARANCINO-enabled applications [53], [59] in 
the wild so far include, among others: weather/pollution 
monitoring, smart city public lighting, trailers’ 
mobility/health monitoring, bridges’/roads’ structural safety.

3.1 Building blocks of an ARANCINO
As depicted in Figure 1, the hardware/software 

architecture embodied by the ARANCINO blueprint may be 
exemplified by a (custom-built) Single-Board Computer 
(SBC)-compatible layout, which features:

a Carrier Board, which runs a MicroProcessor Unit 
(MPU), from Raspberry Pi-family Compute Modules 
(RPi-CMs), which is a cheap, credit card-sized ARM64-
based GHz-class Linux-compatible computers;
one (or more) on-board MicroController Units (MCUs), 
such as Microchip SAMD21-family ARM Cortex-M0+-
(on-module) RAM (e.g., 1GB) and (flash) storage (e.g., 
8/16/32GB eMMC)

Figure 1. An high-level overview of the ARANCINO 
hardware/software architecture
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two (or more) standard (i.e., mikroBUS™ Click) 
ARANCINO Connectors, for peripherals (e.g., WiFi/BT 
interfaces), transducers and all-round expandability;
other slots, most notably: 1 SPI, 25 GPIOs (pin sharing 
configuration) 3 USB Host + 1 USB device (used to
program Compute Modules);

- A crypto-chip can be made available at will for hardware-
based secure key storage.

Those blocks are physically mapped onto the device as 
showed in Figure 2.

3.2 Software running on the MPU
In terms of the (regular) software stack on the 

ARANCINOs, there are four (core) components, as discussed 
below.

The MPU (RPi-CM3) runs a Linux-based fork of 
Raspbian OS, adapted to ARANCINO, which hosts 

the lightweight in-memory key-value (KV) Redis
storage;

- the arancino-daemon service, which manages 
communication over UART (USB) with the built-in 
MCU, as well as with (additional) units when plugged-in 
over USB; recent version support communication over 
Bluetooth, and publisher/subscriber messaging as well;

- the lightning-rod (LR) low-level (watchdog-like) service,
to i) integrate the board into the Cloud infrastructure, ii) 
forward timeseries data, and iii) support plugins used to 
interact with the Cloud dashboard.

No special drivers are required. Driver-enabled I/O may 
be then remotely accessed through the (I/O)Cloud [72], and 
attached to remote Cloud-hosted IoT boards and/or VMs 
transparently. The Cloud stack as well is built around open-
source technologies and extends the widely adopted 
OpenStack ecosystem with a custom subsystem devoted to 
IoT nodes onboarding, presence, and runtime 
management/customization, called IoTronic, part of the 
umbrella Stack4Things [72].

3.3 Software running on the MCU and Interconnections
On the MCU, an ARANCINO runs the (application-

specific) C/C++ firmware in compliance with the arancino-
library, which provides suitable primitives to read data off 

(and store data to) the MPU-side business logic leveraging 
the Redis-backed KV store.

The arancino-daemon on the MCU side and arancino-
library on the MPU side implement Cortex, a “no-frills”
ARANCINO-oriented communication protocol. Its name 
intentionally refers to the cerebral cortex in the human brain, 
where the cortex acts as a conduit between right and left 
hemispheres of the brain. This split separates the real-time 
processing that typically interacts with transducers and often 
required to act promptly on the MCU from more elaborate 
computing duties (e.g., ML-based inference at the edge, data 
sync/transfer to the Cloud), which are almost batch-like on 
the MPU. More in general, the “split-brain” approach leaves 
room for a self-aware, proprioception-like approach where
part of the system takes care of introspective monitoring 
duties, and the other part infers the health status of the node 
overall.

4 A METHODOLOGY TO DESIGN SELF-CHECKING DEVICES

Our methodology to deploy anomaly detectors for 
resource-constrained IoT and edge devices relies on the 
following 4 steps. 
S1. Create an error model that covers most of the anomalies 

that can be generated by the manifestation of common 
errors in Linux-based IoT devices.

S2. Create a monitoring system that fits our case study but 
also applies to similar devices.

S3. Perform error injection campaigns in which we monitor 
the behavior of the target device under normal operating 
conditions and when errors are injected.

S4. Use collected data to train anomaly detectors that can 
then be deployed in the target device to monitor their 
detection and timing performance.

Each step is detailed in Sections 4.2 to 4.5.

4.1 Dealing with Common Pitfalls 
Before getting into details, we want to make sure that our 

methodology is free from obvious pitfalls, or to adequately 
mitigate the issues that are likely to arise in our process. To 
accomplish that, we refer to the paper [1], which lists 10 
pitfalls that are likely to impact studies as this one. We report 
each pitfall in Table I, discussing if and how likely it may be
to impact any of our steps S1 to S4, and mitigations to avoid 
pitfalls posing threats to the validity of our study. Notably, 
the pitfalls are mostly related to the data analysis and machine 
learning processes, which happen in S4. However, the 
successful mitigation of those pitfalls is due to actions that 
need to be taken in earlier steps (S1 – S3) as well. Therefore, 
these pitfalls are cross-cutting to our process and thus highly 
representative.

4.2 S1 – An Error Model for Linux-Based Devices
Detecting anomalies assumes the knowledge and 

characterization of how the system behaves normally [13],
but benefits also from information about the effects of 
potential faults or attacks (i.e., errors [14]) that may impact 

Figure 2. An instance of a board in the ARANCINO family, 
depicting its layout and mapping it to the main components as 

identified in Figure 1
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the target system. Therefore, we contacted the stakeholder to 
discuss how the target ARANCINO device was made, 
potential vulnerabilities, the existence of bottlenecks, and 
relevant software or communication channels. Then, we 
scanned the literature to seek for error models that apply to a 
Linux-based embedded system / IoT device [8], [9], [10].
There is an overall agreement about the high likelihood of 
one of the following events happening in a Linux-based OS.

Resource consumption: either CPU, primary and 
secondary memory may be filled/exhausted by malicious 
or malfunctioning software.
Deadlock: critical sections are heavily used in any multi-
threading context. Shallow management of locks or 
semaphores may end up generating deadlocks and make 
the regular execution flow deviate from expectations.
Unexpected usage of the network, in both directions.

On top of that, we consider that ARANCINO devices 
heavily rely on the Redis [4] database: therefore, we also 
consider erroneous usages of the Redis database, which we 
simulate as subsequent reads / write operations. Lastly, we 
disturb the regular usage of key processes that manage the 
overall device, namely the arancino and node-red Raspbian 

processes, and make them stuck for some time to simulate 
their potential malfunction.

This leads to a total of 8 different errors (CPU usage, RAM 
usage, Disk Usage, Deadlock, Redis read, Redis write, Stuck 
arancino, Stuck node-red) that we will inject into our device, 
monitoring its behavior in the process. We believe that this 
set of errors is rather extensive and refers to different 
modules, processes, and software components. Obviously, it 
may not be complete, but we believe it is good enough to 
successfully address and mitigate pitfall P1 and, to a lesser 
extent, P10.

4.3 S2 – A Lightweight Monitor for Linux-based Devices
We first looked for existing software with the following 

requirements:
lightweight;
customizable regarding sampling interval and the system 
indicators to observe;
able to instrument different layers and components of the 
target system;
compatible with the Raspbian 9 Stretch system, the OS 
running on the ARANCINO devices. This means that the 

Table I. Pitfalls for machine learning in computer security, from [1], mapping to the steps of our methodology, and mitigations to be 
applied to avoid the occurrence of each pitfall in our study.

Pitfall (from [1]) S1 S2 S3 S4 Mitigation

P1 – Sampling Bias. The collected data does not sufficiently 
represent the true data distribution of the underlying problem ✓ ✓ ✓

The error model should cover a wide range of 
performance anomalies that may happen in the target 

device. Also, the monitoring system should gather 
information from different areas of the system to have a 

complete view of the problem
P2 – Label Inaccuracy. The ground-truth labels required for 
classification tasks are inaccurate, unstable, or erroneous, 
affecting the overall performance of a learning-based system

✓ 
Our system monitoring campaign should annotate the 

timeframe in which each error is injected into the system, 
allowing precise and flawless labeling.   

P3 – Data Snooping. A learning model is trained with data 
that is typically not available in practice. n.r. n.r. n.r. n.r.

Our monitoring campaign is exercised on a real device 
that is currently used in many scenarios: therefore, this 

pitfall is irrelevant for our study.

P4 – Spurious Correlations. Artifacts unrelated to the 
problem create shortcut patterns for separating classes.  ✓ ✓

Our monitoring system should avoid gathering features 
that contain information about the experimental setup 

rather than information on the detection problem itself.
P5 – Biased Parameter Selection. The final parameters of a 
learning-based method are not entirely fixed at training time. 
Instead, they indirectly depend on the test set.

  ✓ The test set is clearly separated from the training set, with 
no overlaps.

P6 – Inappropriate Baseline. The evaluation is conducted 
without, or with limited, baseline methods.   ✓

Albeit a complete benchmark is not the main aim of the 
paper, we will compare the detection and timing 
performance of 9 supervised anomaly detectors.

P7 – Inappropriate Performance Measures. The chosen 
performance measures do not account for the constraints of 
the application scenario, such as imbalanced data or the need 
to keep a low false-positive rate

  ✓
We are aware that common metrics such as accuracy or 

F1-Score should be disregarded [2] when evaluating 
binary classifiers that detect performance anomalies in 
IoT devices. Those are expected to perform regularly, 

and only rarely encounter problems (thus the real-world 
data they face is skewed and unbalanced towards normal 

data).

P8 – Base Rate Fallacy. A large class imbalance is ignored 
when interpreting the performance measures leading to an 
overestimation of performance.

 ✓
P9 – Lab-Only Evaluation. A learning-based system is solely 
evaluated in a laboratory setting, without discussing its
practical limitations.

 ✓ 
This paper conducts a lab-only evaluation. However, we 

try mitigating this problem by conducting system 
monitoring under different operating conditions.

P10 – Inappropriate Threat/Error Model. The security of 
machine learning is not considered, exposing the system to a
variety of attacks, such as poisoning and evasion attacks.

✓ ✓
This study does not account for adversarial attacks to the 
anomaly detector. However, we make sure that our error 

model is as much correct and complete as possible.

28



tool must be written either in C/C++ (gcc 7.x), Python 
<= 3.5.3, or Java (v. 8 openJDK).

Unfortunately, we did not find any good fit for that: as 
such, we coded a monitor ourselves, and made it publicly 
available through a public GitHub repository [3]. The 
monitor is written in Python 3.5.3, featuring a total of 7
probes, that can be activated at will:

Network (32 features): reads data from the system file
/proc/net/dev
Chip temperature (1 feature): reads data from the system 
file /sys/class/thermal/thermal_zone0/temp
Virtual Memory (116 features): reads data from the 
system file /proc/vmstat
Memory Info (38 features): reads data from the system 
file /proc/meminfo
IO Stats (6 features): uses the iostat Linux package and 
parses its textual output.
Python Indicators (55 features): uses the psutil functions 
cpu_times, cpu_stats, getloadavg, swap_memory, 
virtual_memory, disk_usage, disk_io_counters, 
net_io_counters.
Redis DB (25 features): accesses to Redis performance 
indicators through the redis-py Python wrapper

The reader should note that this monitor has only minimal 
dependencies and thus can be installed without requiring to 
download additional libraries. For further information, please 
refer to the documentation available at [3]. Also, it activates 
a single process in the target device, making it easy to control 
for intrusiveness, which is a major concern when setting up 
this type of study. Ideally, a monitor should observe the 
performance indicators of a system without impacting it [15]:
however, this is possible only in restricted scenarios e.g., 
network monitoring using an external device connected to the 
network. Conversely, we need to deploy the monitoring
software to the target device, partially using the resources that 
we are going to monitor with the software itself. Therefore, 
our monitor will unavoidably gather information that is 
affected by the fact that the monitor itself is running and using 
the device’s resources. However, this does not represent a 
problem nor creates spurious correlations (pitfall P4) for the 
following two reasons. Firstly, the activity of the monitor is 
constant over time: therefore, the added load is semi-constant 
such that it can be considered background noise. Secondly, 
the monitor is always active in our experiments: therefore, it 
will affect all data we gather in the same way and will not 
make any difference with respect to the boundaries between 
normal and anomalous behavior.

4.4 S3 - Injecting Errors to Collect Labeled Data
The definition of the error model and the monitoring 

system paves the way for an experimental campaign in which 
we equip the ARANCINO with the monitoring system that 
samples data every second, and let it do its business as usual. 
This provides a data baseline that we can use to characterize 
the normal behavior of the device. Additionally, we perform 
random injections of each of the 8 errors in Section 4.2,

keeping the monitoring system in place. This provides data 
about how the ARANCINO device reacts to errors (i.e., the 
anomalies due to different root causes), which we label 
accordingly. Our experimental setup activates an injection 
with 5% of probability. The error to inject is randomly chosen 
out of the 8 available in our error model. Once activated, the 
injection remains active for 5 seconds; then, we manually 
deallocate as best as we can the resources used for the 
injection and wait a total of 10 seconds of cooldown. During 
cooldown it is not possible to activate new injections, 
providing the device with some time to repair itself (e.g., 
garbage collection, freeing up zombie processes, de-
allocating resources that were used by the injection and that 
could not be manually freed, and so on).

This methodology provides a very precise and reliable 
way of gathering labeled data without any inconsistencies 
(thus avoiding pitfall P2). On the other hand, the reader may 
argue about the representativeness of the data we collect with 
respect to the behavior of a device that is meant to be used in 
different setups as an edge component of an IoT system, or 
as a smart sensor. Conducting experiments in which the 
ARANCINO is performing the same task in the same 
network topology, with the same operating conditions and 
workload may heavily bias the data we have and thus skew 
the detecting phase (pitfall P9). There are no means to avoid 
this problem at all: we mitigate it by exercising experiments 
in the following 3 environmental setups:

uni-env (69000 observations): the device is connected to 
a WiFi network at the premises of our university; the 
network is shared by many devices and features a non-
trivial topology.
home-env (72000 observations): the device is connected 
to a WiFi network in a flat of a residential building, 
where only a few devices are admitted to access the 
network. It is directly connected to the router (no 
intermediate switches) and to the FTTC private fiber 
network.
out-env (13000 observations): the device is positioned
outdoors and connected to a private WiFi network (i.e., 
tethering from a mobile connection) providing 
connectivity to two nodes at all times.

This leads to the creation of 4 separate labeled datasets
[52] composed of the timestamp, i.e., a long int in ms, 276 
features from the monitoring system, and a label i.e., normal 
or any of the 8 errors: a dataset for each scenario above, and 
a fourth dataset which merges the first 3 datasets (all-env,
composed of 154000 observations).

4.5 S4 - Anomaly Detectors
A labelled dataset enables the usage of any supervised ML 

algorithm for detecting performance anomalies. This opens 
doors to a plethora of different experiments and comparisons 
about the detection performance among a multitude of 
algorithms. Particularly, literature tells that the de-facto 
standard approach for processing tabular datasets (as ours 
actually is) consists in employing tree-based ML algorithms,
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which typically outperform neural networks, even those that 
are being repurposed explicitly to classify tabular data [11].
Additionally, we are interested in selecting a subset of 
classifiers that are as heterogeneous as possible to avoid 
exercising many classifiers which will result in very similar 
outcomes (see pitfall P6). We favor classifiers that require 
minimal parameter tuning to avoid conducting random or 
grid searches which would add yet another dimension of 
analysis and expose to pitfall P5.

Therefore, we selected the statistical Gaussian, Bernoulli 
and Multinomial Naïve Bayes [20], a Perceptron, the Logistic 
Regression [18], as well as the tree-based Decision Tree [23],
Random Forest [22] and Gradient Boosting [17], whose 
implementations are all made available in the Scikit-Learn 
Python package. Remember that we are constrained to using 
Python 3.5.3, which locks the Scikit-Learn version to 0.22.1 
(3 years old and missing recent algorithms and features). 
Also, we do not consider classifiers that have an O(n2) usage 
of memory, since they make the training process fail due to 
insufficient memory. Thus, algorithms such as Linear [19]
and Quadratic [16] Discriminant Analysis, Support Vector 
Machines [18] and any neural network other than the single-
layer perceptron are out of the picture. Also, we avoid the 
usage of K-th Nearest Neighbors [21], which even with the 
kd-tree enhanced neighbor search requires an exceedingly
high O(log n) amount of time to decide on anomalies and thus 
cannot be applied as an anomaly detector for the 
ARANCINO. Overall, we select 9 algorithms that perform 
well with default parameter values: however, for ensemble 
classifiers as random forests and gradient boosting, where the 
number of estimators has a huge impact on resource usage, 
we create instances using 10, 30 and 100 estimators. This 
leads the total of supervised algorithms to 13: gaussian naïve 
bayes (gnb), Bernoulli naïve bayes (bnb), multinomial naïve 
bayes (mnb), perceptron (mlp), logistic regression (lr), 
decision tree (dt), stochastic gradient descend (sgd), random 
forest with 10, 30 and 100 trees (rf10, rf30, rf100), gradient 
boosting with 10, 30, and 100 decision stumps (gb10, gb30, 
gb100).

We want ML algorithms to act as anomaly detectors: 
therefore, we will convert the 9-class label of the datasets in 
S3 to a binary label, i.e., normal against others. Also, we 
preprocess datasets to remove hidden labels and constant 
columns that represent useless features. This leads to a set of 
119 (out of the initial 276) non-trivial features to be used for 
detection in each dataset. Once everything is set, we run each 
of the 13 supervised classifiers on each of the 4 datasets (for 
a total of 52 models), and test against all 4 datasets as well.
Noticeably, there is a general agreement that ML algorithms 
should not be necessarily trained on edge or in any other 
device that has strong resource constraints, whenever 
possible. In this situation, the model is trained somewhere 
else, and the resulting model is then sent to the target device, 
deployed and ready to use at runtime. However, there may be 
situations in which this is not feasible due to reasons such as 
data privacy, or specific system architectures (e.g., a 

federated learning scenario [45]). Therefore, we will train and 
test anomaly detectors on the device itself.   

We measure the detection performance of each model 
through the confusion matrix (i.e., TP, TN, FP, FN), 
Precision (P), Recall (R, or coverage), False Positive Rate 
(FPR), Accuracy (ACC) and Matthews Correlation 
Coefficient (MCC). MCC is robust to unbalanced datasets 
and as such nice to pair with accuracy to address pitfalls P7 
and P8. To guarantee independence between train and test 
sets, we proceed to a 70-30 train-test split of each dataset. The 
summary of this process is in Figure 3.

5 EXPERIMENTAL RESULTS AND DISCUSSION

This section shows the experimental results related to the 
training (Section 5.1) and testing phase (Section 5.2) of 
anomaly detectors on the target ARANCINO device.

5.1 Training Anomaly Detectors
We first analyze the training phase of anomaly detectors. 

Figure 4 plots train time (in seconds) against model size (in 
KBs) of each of the 13 anomaly detectors trained using all-
env, out-env, uni-env datasets. Results using home-env do 

Figure 4. Plotting train time (seconds) against model size (in KB) 
of each anomaly detector trained using each of the 4 datasets. 

Results using home-env do not appear here as they overlap with 
those of uni-env. Logarithmic scale for both axes.

Figure 3. The process of training and testing anomaly detectors in 
this paper.
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not appear in the figure as they overlap with those of uni-env.
Let us focus on the horizontal axis: the more we go to the 
right, the slower the training process. As expected, most of 
the items on the right of the plot correspond to detectors 
trained using all-env and uni-env datasets, which contain 
many more data points than out-env. The difference may not 
seem relevant, but the reader should consider that the plot has 
logarithmic scale on both axes. There is another important 
trend: gradient boosting and random forest detectors are 
always more on the right with respect to other detectors 
trained using the same dataset, whereas the naïve bayes 
detectors are always faster and hover on the left of the picture. 
The vertical axis of Figure 4 instead depicts the size of the 
models at the end of the training phase, which follow a 
similar trend with respect to the train time. Overall, it is safe 
to say that the detectors that require more time to train are 
also the ones that output a heavier model. This may not seem 
surprising, but it is not a trivial observation: we can observe 
how logistic regression lr does not exactly follow this trend, 
as it produces a few KB of model, but requires far more time 
than fast detectors such as the naïve bayes gnb, bnb, mnb.

5.2 Testing Anomaly Detectors
Another important discussion regards the performance of 

anomaly detectors both from a classification and timing 
viewpoint. We expand on this item with the aid of Figure 5,
which plots test time (in milliseconds) against MCC of each 
anomaly detector tested against home-env dataset. Depicting 
results when testing all detectors on all datasets would have 
made the plot completely unreadable, thus we selected a 
single test dataset. Other results are in the repository at [52].
The scatterplot may still seem hardly readable due to the high 
count of items and labels, yet it provides the following key 
insights.

All detectors can classify a single data point in at most 
167 ns (0.167 ms), which is very fast and thus does not 

represent a timing bottleneck when deploying these 
algorithms on the ARANCINO.
Up in the picture (i.e., high MCC and thus good detection 
performance) we exclusively find yellow circles: there is 
no detector trained using all-env, out-env, uni-env that 
has an MCC higher than 0.6 when tested against home-
env. High MCCs are achieved by detectors trained and 
tested on different partitions of the same home-env 
dataset, meaning that each of the 4 dataset is slightly 
different from others, and that models do not always 
generalize well when train and test sets come from 
different datasets.
Overall, rf and gb classifiers have a better MCC than 
other detectors when dealing with the same dataset. Also, 
only rf and gb detectors reach and surpass MCC = 0.5, a 
result that shows there is still room for improvement.

The reader may have expected that using all-env as 
training set would have provided a more complete and robust 

Figure 5. Plotting test time (milliseconds) against MCC of 
anomaly detectors trained using home-env(yellow dots), uni-env 
(blue squares), out-env (green marks), all-env (orange triangles)
and tested against the same home-env dataset. Logarithmic scale 

for horizontal axis.

Table II. Timing and Classification performance of bnb, lr, gb10, rf100 detectors trained on different datasets and tested against home-
env. Classification metrics are paired with arrows that specify if we want the metric to be high (↑) or low (↓).

clf Train dataset time (ns) (↓) ACC (↑) MCC (↑) TP (↑) TN (↑) FP (↓) FN (↓) FPR (↓) P (↑) R (↑)

St
at

is
tic

al

bnb

all-env 6.1 0.844 0.271 387 17850 3309 54 0.156 0.105 0.878
home-env 6.0 0.845 0.275 384 17862 3312 42 0.156 0.104 0.901
out-env 6.2 0.171 0.000 3696 0 0 17904 n.a. 1.000 0.171
uni-env 6.0 0.844 0.271 384 17853 3312 51 0.156 0.104 0.883

lr

all-env 2.0 0.874 0.476 1037 17844 2659 60 0.130 0.281 0.945
home-env 1.9 0.905 0.627 1864 17680 1832 224 0.094 0.504 0.893
out-env 1.8 0.397 0.114 3066 5504 630 12400 0.103 0.830 0.198
uni-env 2.0 0.864 0.477 1786 16878 1910 1026 0.102 0.483 0.635

Tr
ee

-b
as

ed
 E

ns
em

bl
es

gb10

all-env 11.0 0.893 0.576 1391 17899 2305 5 0.114 0.376 0.996
home-env 11.4 0.908 0.645 1746 17873 1950 31 0.098 0.472 0.983
out-env 11.0 0.895 0.582 1674 17664 2022 240 0.103 0.453 0.875
uni-env 11.1 0.893 0.575 1391 17896 2305 8 0.114 0.376 0.994

rf100

all-env 131.2 0.897 0.591 1627 17752 2069 152 0.104 0.440 0.915
home-env 167.0 0.976 0.915 3226 17864 470 40 0.026 0.873 0.988
out-env 107.4 0.704 0.301 2485 12717 1211 5187 0.087 0.672 0.324
uni-env 121.1 0.786 0.354 2107 14863 1589 3041 0.097 0.570 0.409
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model that consequently would have had the highest metric 
scores on any test set. However, the all-env dataset includes 
data from different experimental setups that (slightly) differ 
from each other and may represent an heterogeneous baseline 
that constitutes noise instead of helping to build a more robust 
model. In our case, training using all-env is not detrimental, 
but also not really beneficial when looking at metric scores.

For completeness, Table II reports the classification 
metrics related to some of the detectors in Figure 5. We show 
all classification metrics and the time to predict the label of a 
data point related to statistical anomaly detectors bnb and lr,
and to ensembles of decision trees gb10 and rf100. There are 
4 rows for each anomaly detector, reporting scores related to 
each of the 4 train datasets tested against the same home-env.
Starting from the time(ns) column, we can observe how the 
statistical detectors are clearly faster than tree-based gb and 
rf. The time needed by rf100 is far higher than its 
competitors: this is not strictly due to the algorithm, but to the 
number of trees (100) in the forest. The reader can notice that 
the time needed by gb10 is clearly faster, but this is because 
the gb10 detector is an ensemble of 10 weak learners, a tenth 
of the trees in the rf100.

We then switch our focus to classification metrics, with 
Accuracy (ACC) being the most used typically. We see that 
ACC scores of the statistical detectors are inferior with 
respect to those of tree-based ensembles, which is expected 
as the latter are conceived to output a low number of 
misclassifications. The trend holds when looking at different 
metrics, which keep showing better results overall when 
using tree ensembles. We want to point out how the same 
algorithm trained with different training sets has very 
different detection performance when tested against the same 
test set: this is particularly evident for bnb, lr and rf100,
which have very poor detection performance when trained 
using the out-env dataset. This is due to the training dataset 
not being informative enough or due to the algorithm not 
learning a model which generalizes well to datasets collected 
in similar (yet not identical) operating conditions. Instead, the 
classification performance of gb10 is very similar across the 
4 test datasets, because it builds a robust model that does not 
suffer from the problem above mentioned.

6 ON TIME SERIES ANALYSIS

However, Table C raises an important discussion item: 
even gb10 - which has the most consistent classification 
performance out of all the detectors in this paper – still 
outputs several misclassifications which may be considered 
high in most cases. Particularly, an accuracy of roughly 90% 
means that one observation out of 10 will be misclassified, 
most likely as a false positive (i.e., low precision, very high 
recall). This generates several false alarms which may be 
considered unfeasible for practically deploying anomaly 
detectors in the ARANCINO device as it will trigger too 
many unnecessary investigations to diagnose a problem that 
in fact does not exist. 

There seem to be straightforward ways to deal with this 
problem: just generate a bigger training dataset or try more 
algorithms and more configuration of hyperparameters to 
find the sweet spot that maximizes the classification 
performance. However, the detectors we trained up to this 
moment are not exploiting the fact that the behavior of the 
target device is meant to (gracefully) evolve through time. 
Instead, we are labeling data points in the test set solely 
relying on each of them separately, instead of making a 
prediction based on the current observation plus the way 
feature values evolved in the (recent) past. In other words, we 
clearly want to classify data points in time series, but we are 
neglecting this property ourselves by using ML algorithms 
that perform classification without the notion of time 
ordering.

For the sake of brevity, we cannot discuss the time-series 
approach within the size of this paper; instead, we list below 
the approaches we are currently planning to and currently 
using to enhance classification performance of the anomaly 
detectors.

Using ML algorithms that are naturally meant to process 
time series as anomaly detectors. This approach is 
straightforward, but it carries an important problem: 
algorithms such as LSTM [46] employ convolutional 
neural networks, which are typically considered some of 
the heaviest classifier to train and test, and as such do not 
pair well with resource-constrained environments such 
as small embedded devices or edge devices.
Hand-crafting new features that carry time-series 
information. For example, if an existing feature is 
“percentage of RAM used”, we may be interested in 
deriving features as “difference in percentage of RAM 
used with respect to the previous observation”, or similar 
others. This does not put constraints on the ML 
algorithms to use but creates anomaly detectors that rely 
on many more features and as such may be slower to 
exercise.
Exploring specific approaches, e.g., bag-of-features 
[47], complex temporal features [48], feature fusion [49],
Gaussian Process Regression [60] and, more 
importantly, distance-based [50] features, which may be 
global, local or embedded depending on the way they are 
computed.

7 CONCLUSIONS

This paper presented a methodology for bringing Machine 
Learning (ML) into resource-constrained devices to provide 
them with means to detect behavioral anomalies and thus be 
self-aware of their health status. We presented a general 
methodology that may be applied to any edge, embedded or 
IoT device which runs a Linux-based OS (indeed, the vast 
majority on the market), describing common pitfalls and how 
our methodology is robust with regard to these. Then, we 
showed an application of the methodology targeting
ARANCINO devices, which are equipped with sensors, an 
MCU, and a Raspbian-derived OS that puts everything 
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altogether and provides connection primitives and basic OS 
services. This allowed ARANCINOs to find wide application 
in different domains such as smart cities, environmental and 
transportation monitoring: however, enabling them to auto-
detect behavioral anomalies may actually make these devices 
genuinely unique on the market.

Applying our methodology helped us collect datasets 
about the behavior of the ARANCINO device, injecting 
performance anomalies and observing how the device reacts.
Those datasets were used to train and test ML algorithms
suitable for binary classification and thus excellent at
detecting anomalies. However, those algorithms do not 
consider data as time-ordered series, and as such cannot 
precisely define the evolution of the context. Therefore, as a 
future work, we are and will be exploring and experimenting 
with time-series analysis, which we expect to have a 
beneficial impact on the whole classification task, 
particularly in lowering false alarms and improving our 
overall detection performance.
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