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Abstract—Software systems are getting larger and more com-
plex than ever before. In order to improve software reliability,
software defect prediction is applied to assist developers in
bug discovery. The ranking-oriented software defect prediction
aims to rank software modules according to the predicted de-
fect counts. However, existing ranking-oriented defect predic-
tion models are constructed based on traditional hand-crafted
features, which might overlook the rich syntactic information
buried inside the source codes. In this paper, we propose a
universal deep learning-based framework called United Deep
Network for ranking-oriented software defect prediction. This
framework utilizes deep neural networks to automatically
generate features from source code with the syntactic and
structural information preserved, and it can combine extracted
features with traditional hand-crafted features in order to take
advantage of both kinds of features to construct prediction
models. Experimental results over 29 sets of data show the
good performance of the proposed framework for building
ranking-oriented defect prediction models.

Keywords–ranking-oriented software defect prediction; deep
neural network; convolutional neural network; recurrent neu-
ral network

1. INTRODUCTION

The ever-increasing complexity of modern software systems
has enhanced the demands for software reliability. Software
defects are flaws or deficiencies in software that prevent it from
working as expected and bring about software failures [41].
Software Defect Prediction (SDP) is a technique to predict
code areas that potentially contain defects [15]. The code areas
could be files, methods, classes or packages. Most existing
SDP studies [11], [15], [23], [30], [41] consider SDP as a
binary classification problem, which focuses on predicting
whether defects exist in a specific area of source code or
not [23]. Meanwhile, some SDP studies [27], [38], [39] take
the number of defects within software modules into account
and rank software modules according to the predicted number
of defects. The ranking result reflects the priority of code
inspection or unit testing, thus serving as a useful tool for
determining the order in which code should be inspected.
This paper attempts to address the problem of ranking-oriented

defect prediction, and focuses on file-level prediction. Typical
SDP is mainly composed of three steps [27]: (1) collecting or
extracting features from source files; (2) training a prediction
model based on the obtained features and bug information
using model construction methods such as traditional machine
learning methods; (3) and applying the trained model to predict
probability or quantity of software defects in new code areas.
In general, previous studies attempt to tackle SDP in two
research directions: to design or generate more expressive
features; or to construct better models. In order to obtain rep-
resentative features, many previous studies [15], [21] utilized
various discriminative hand-crafted features to capture holistic
software characteristics, such as Halstead features based on the
number of operators and operands [6], McCabe features based
on dependencies [16], Chidamber and Kemerer (CK) features
for the object-oriented programs [8], and so on. However,
since programming languages are designed with well-defined
syntax, traditional hand-crafted features may overlook the
rich syntactic and local structural information that are buried
deeply inside program’s abstract syntax trees (ASTs) [33].
In recent years, deep learning has made remarkable strides
and achieved significant progress in virtually every sphere
of research, such as computer vision and natural language
processing. Motivated by these huge success, some studies
[15], [23] attempted to extract features and predict defects
directly from software ASTs using convolutional neural net-
works (CNN). They have made progress using the extracted
features over PROMISE Source Code (PSC) dataset [15] and
Simplified PROMISE Source Code (SPSC) dataset [23], but
these studies focused on a binary classification task rather than
a ranking-oriented SDP problem.
In order to construct better models, researchers compare
multiple methods to select or directly design proper methods.
For instance, Yu et al. [39] compared various methods includ-
ing pointwise, pairwise and listwise approaches for ranking-
oriented SDP over public datasets including AEEEM [5] and
Eclipse [43], and the authors found that when using module as
effort, random forest regression performed best under cross-
release setting; and Yang et al. [36] compared ridge and lasso
regression methods with existing methods and found that ridge
regression [36] and Random Forest Regression (RFR) [35]
could achieve better results under cross-release setting. With
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the popularity of deep learning, some researchers (such as Lei
et al.’ work [27] and Meetesh and Pradeep’s work [22]) also
applied deep learning methods for solving ranking-oriented
SDP problems. However, these studies extracted features from
traditional hand-crafted features instead of source code.
Due to the lack of deep learning to extract new features
directly from source code for ranking-oriented SDP problems,
we attempt to fill this gap in this study. To be specific,
we propose a ranking-oriented SDP framework called United
Deep Network (UDN), which makes use of both deep syn-
tactic features and traditional hand-crafted features. Specif-
ically, inspired by [15], we extract syntactic features from
software ASTs using deep neural network like CNN and
RNN, and concatenate the extracted deep syntactic features
with the traditional hand-crafted features in order to take full
advantage of both rich local structural features and precise
holistic features of source codes. We then feed the combined
features to model construction methods such as Random Forest
Regression (RFR) to generate ranking-oriented SDP models.
The main contributions of this paper are as follows.
• This paper first extracts features from source code using

deep learning for ranking-oriented SDP.
• This paper proposes a simple and universal ranking-oriented

SDP framework which combines features extracted from
ASTs using deep neural network like CNN and RNN with
traditional handcrafted features, in order to fully utilize both
rich local syntactic features and precise holistic features
of source codes to construct ranking-oriented SDP models.
Furthermore, this paper compares different model construc-
tion methods based on the combined features, in order to
give a comprehensive comparison.

• This paper also compares different deep neural network
(DNN) frameworks, including GRU [2] and ResNet [7].

2. BACKGROUND

As mentioned by some previous work [15], [23], a typical file-
level software defect process is composed of multiple steps,
as shown in Figure 1.
The first step is to preprocess data and labels according to
the demands and limitations of the problem to solve and the
methods to use. Labels should be non-negative integers to
indicate number of defects in a file for the ranking-oriented
SDP task (and integers should be binarized to indicate whether
bugs exist in a file for the binary defect classification task).
As in some CNN-based SDP research [15], [23], source codes
of both training files and testing files would be parsed into
Abstract Syntax Trees (ASTs), then select representative nodes
on ASTs to form token vectors. Thus each source code file
would be transferred to a token vector before being fed into
the following encoding phase.
The second step is to extract features from source files using
traditional hand-crafted methods or deep learning models. In
general, there are two categories of traditional hand-crafted
features: code metric features (e.g., McCabe features [16],
Halstead feature [6] and CK features [8]), and process metric
features (e.g., change histories). Deep-learning-based feature

extraction utilizes deep learning models like deep belief
network (DBN) [31] and CNN [15], [23], [27] to extract
features. Some existing classification-oriented deep-learning-
based methods extract file features from ASTs, while other
studies [22], [27] extract features from selected hand-crafted
features.
In the third step, the obtained features are utilized as training
instances to build predictive model using various machine
learning algorithms, such as Logistic Regression, Linear Re-
gression, Support Vector Machine (SVM), Naive Bayes and
Decision Trees.
Finally, new instances would be fed into the trained model
to generate predicted defect information. Prediction results
would be evaluated using some metrics like F-measure (also
F1 score) for classification-oriented SDP or fault-percentile-
average (FPA) metric [32] for ranking-oriented SDP, in order
to measure model performance.

token vectors

10, 23, 199, ....

199, 2, 32, ....

4, 99, 265, ....

source codes
features

Predictive
Model

predictions

(1) Preprocess data (2) Extract feature (3) Train model (4) Generate prediction

labels

Figure 1. A typical software defect prediction process.

In practice, the SDP problem could be categorized into
within-project-defect-prediction (WPDP) and cross-project-
defect-prediction (CPDP), based on whether both training and
test instances come from the same software project. Simi-
larly, WPDP could be further categorized into within-version-
WPDP and cross-version-WPDP, according to whether all the
instances come from the same version of the project. In this
work, we focus on the ranking-oriented cross-version-WPDP
problem. Following the conventions of previous research [15],
within a project, we use instances from an older version for
training, and instances from a newer version for testing.

3. APPROACH

In this section, we elaborate our proposed United Deep Net-
work (UDN), a DNN-based framework for ranking-oriented
SDP which can generate syntactic features from source codes,
and can combine the generated features with traditional hand-
crafted features. The overall workflow of UDN is illustrated
with Figure 2.

3.1 Preprocessing Source Code

Source code is essentially a sequence of text and requires fur-
ther conversion to the representations that machine can directly
process. Following conventions of natural language processing
(NLP), text sequence data like source code requires some
preprocessing before training, and the typical preprocessing
procedure includes two steps: tokenization and token encoding.
Tokenization is the process of segmenting a sequence of
text into individual units, and the units here are called the
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Figure 2. The overall workflow of our proposed UDN.

tokens of the sequence. For file-level tokenization, each source
code file would be transferred to a vector of tokens. We can
perform tokenization on different levels of granularities. For
software programs, according to [23], possible granularities
of tokenization could be character-level, token-level, AST-
node-level, tree-level, etc. As analyzed in [26], AST-node-
level tokenization is the optimal option for building program
representation, which preserves both syntactic and structural
information of programs. There are numerous open-source
libraries available for parsing source code to ASTs, which
provides convenient workflow to perform AST-node-level to-
kenization. For example, some previous SDP research [15],
[23] take advantage of an open-source Python package called
javalang1 to get their Java source code tokenized. The AST
nodes would be selected automatically according to certain
filtering rules and output as sequential tokens, in order to serve
as the inputs for the subsequent models.
In practice, a vast majority of machine learning frameworks
require numerical vectors as inputs, so the generated token
vectors cannot be directly sent to these models. To solve this
problem, following [15], [23], we build a mapping to encode
each token to an associated integer. Each token corresponds
to a unique integer identifier which ranges from 1 to number
of token types. Thus tokens can be distinguished from each
other via their unique identifiers. Additionally, models like
CNN require input vectors to share the equal length while
text sequences like source code often differ in their lengths.
In the event of this issue, we simply pad zeros at the end
of each integer vector, making all of them matching the
length of the longest vector. The padded zeros would not
disrupt the encoding because the identifiers with meaning start
from one. Following common practices in NLP domain, we
delete infrequent tokens which appear less than three times by
encoding them to zero.

3.2 Word Embedding

In NLP, word embedding is a technique that transfers a word to
a corresponding real-valued vector that encodes the meaning of
the word. The embedded vectors capture the similarity among

1https://github.com/c2nes/javalang

words in such a way that words that are closer in the vector
space are expected to be similar in meaning [12]. Prior to the
proposal of word embedding, words are used to be represented
in either the naive integer form as discussed in the former
subsection or in the one-hot form with the size of corpus, and
both representations fail to express the similarity among words
precisely.
Word2vec [18], [19] is one of the most commonly used word
embedding techniques and it uses neural network to learn word
associations from a large corpus of words. Word2vec is one
of those unsupervised or self-supervised learning techniques
which attempt to train models without utilizing any hint of
labels. In general, the word2vec family contains two types
of architectures, namely Continuous Bag of Words (CBOW)
[18] and skip-gram [19]. In both architectures, word2vec takes
both current words and a sliding window of context words
surrounding the current words into account as it iterates over
the entire corpus. In CBOW architecture, the model predicts
current word from the surrounding context words. In skip-
gram architecture, the model utilizes current word to predict
context words within the sliding window. In general, CBOW
is faster but skip-gram does a better job for infrequent words
[19]. We use skip-gram as our word embedding architecture.
In the skip-gram model, each word plays two roles: as a center
word and as a context word. Thus each word has two d-
dimensional-vector representations for calculating conditional
probabilities. For any word wi with index i, we denote its
two vector representations by vi ∈ Rd and ui ∈ Rd for
center word and context word, respectively. According to [42],
the conditional probability of generating any context word wo

given the center word wc can be modeled by the softmax on
vector dot product:

P (wo | wc) =
exp(u⊤

o vc)∑
i∈V exp(u⊤

i vc)
, (1)

where V = {0, 1, . . . , |V| − 1} is the corpus index set.
Word2vec model is a shallow, two-layer neural network, whose
parameters are the center word vector and context word vector
for each word in the corpus. Given a text sequence of length T ,
where the word at time step t is denoted as w(t). Assume that
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Figure 3. Basic DNN architecture of our proposed UDN.

context words are generated independently given any center
word. For window size l, we train the model by minimizing
the following logarithmic loss function:

−
T∑

t=1

∑
−l≤j≤l, j ̸=0

logP (w(t+j) | w(t)), (2)

Following the conventional training process, we use the neg-
ative sampling technique [19] to optimize the computational
complexity of training word2vec. We train word embedding
using all training instances prior to training DNN models and
store the trained embedding for future use. Before evaluating
on a new dataset, we simply replace the previously unseen
tokens with a specific unknown token.

3.3 Building Deep Neural Network

The basic DNN architecture of the proposed UDN and training
procedure is illustrated in Figure 3. We train our DNN model
using training instances that are preprocessed into integer
ASTs tokens. Our DNN model starts with an embedding layer,
which turns positive integer indexes into real-valued vectors
of fixed size, and ends with a dense (linear) layer as the
output layer of the DNN model. We replace the embedding
layer with the pretrained word2vec embedding from the former
subsection before training and then freeze the weights of the
embedding layer. We set the output size of the final dense
layer to 1 in order to generate defect count prediction and
train the DNN model using gradient descent based optimizing
technique. It should be noted that the dense output layer here
is used to optimize network parameters in order to improve
the quality of the extracted features, so the outputs before the
final dense layer in the DNN model are considered to be the
extracted features.
For the purpose of validating the universality of aforemen-
tioned feature combining strategy, we implement three differ-
ent DNN models as backbone feature extracting models, which
are based on the widely adopted VGG [29], ResNet [7] and
GRU [2]. Our implementation is based on Pytorch [24] and

the detailed design will be discussed in the remainder of this
subsection.

3.3.1 Visual Geometry Group (VGG)

VGG is a widely recognized convolutional neural network
architecture that achieved remarkable performance in the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) in
2014 [28]. It is originally designed for 2D image recognition.
Its key feature is the use of 3× 3 Conv2d (2D convolutional)
filters throughout the entire network, allowing for deeper archi-
tectures with fewer parameters. The architecture’s simplicity
and effectiveness make it a popular benchmark and a base for
further network development. For SDP problem, each input
token of the source codes would be transferred to a 1D vector.
To adapt such change in data dimension, all the layers tailored
for 2D data in VGG as well as other CNN architectures, such
as convolutional layers and pooling layers, should be replaced
by their 1D variations.
As illustrated in Figure 4, the VGG structure used in our
UDN is composed of multiple VGG blocks, followed by an
MLP (Multi-layer Perceptron). Each VGG block is composed
of a Conv1d (1D convolutional) layer, a BatchNorm (batch
normalization) layer, a ReLU activation layer and a MaxPool
(max pooling) layer in sequence. The batch normalization
layer is used to mitigate the internal covariate shift inside
deep networks by performing data normalization [10], which
is neglected by almost all previous CNN-based SDP research.
The MLP at the end of the VGG is composed of several
dense layers, and similar to VGG block, a BatchNorm layer,
a ReLU activation layer and a Dropout layer (drop rate=0.5)
are placed between two dense layers. For this study, we used a
VGG model composed of three VGG blocks and a four-layer
MLP. For the three VGG blocks, the three Conv1d layers share
almost the same settings (kernel size=3, stride=1, padding=1)
except for output channel size (64, 32, 32, respectively), and
all the three MaxPool layers are set to be the same (kernel
size=2, stride=2). For the MLP layers, the hidden size of the
dense layers are set to 64 except for the last two of them (20
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for feature extraction and 1 for model output, respectively).

VGG block

Conv1d

BatchNorm

ReLU

MaxPool

q

MLP

Dense

BatchNorm

ReLU

Dropout

Dense

Dense
...

VGG

...

...

Figure 4. The VGG model structure for UDN.

3.3.2 Residual Network (ResNet)
ResNet is a deep learning neural network architecture that was
introduced in 2015 by He et al [7]. It is known for its unique
structural characteristic of using residual blocks, which are
made up of multiple layers, to overcome the vanishing gradient
problem that can occur in very deep neural networks. In a
residual block, the output of one layer is added to the output
of a previous layer, allowing the network to better propagate
gradients through the network and improve its accuracy. Its
ability to train very deep networks has made it a popular
choice for many applications in computer vision and beyond.
Hence, we attempt to apply the ResNet architecture to SDP
problem. Similar to VGG, ResNet was originally tailored for
2D image data. Therefore, we replace the layers associated
with 2D inputs like convolutional layer and pooling layer to
their 1D versions.
The ResNet structure that we use is depicted in Figure 5. In
general, ResNet could be devided into three parts from front
to back. (1) The first part consists of a sequence of Conv1d
layer (kernel size=7, stride=2, padding=3, output channel=64),
BatchNorm layer, ReLU activation layer and MaxPool layer
(kernel size=3, stride=2). (2) The second part is composed of

several residual blocks. Within each residual block, a series
of Conv1d layer, BatchNorm layer, ReLU actvation layer,
Conv1d layer and BatchNorm layer are used. At the end of
the block, the BatchNorm output is added with the block input
with a skip connection before being fed into the final ReLU
activation layer. Two Conv1d layers have similar settings
(kernel size=3, padding=1) except for the strides (2 for the first
Conv1d, 1 for the second), and their hidden channel size would
be the same as the block output channel size. For this study,
we use a simplified ResNet with three residual blocks (output
channels=64, 32, 32). A pointwise Conv1d layer with kernel
size 1 is used on the skip connection in the latter two blocks
in order to align channel of block inputs with the BatchNorm
layer outputs before adding. Further implementation details
can be found in [42]. (3) The last part of ResNet is a group
of an MLP and an AdaptiveAvgPool (global average pooling)
layer gathering global features before MLP. In the end, we use
a four-layer MLP with the same settings as in VGG model
described before.

Conv1d (kernel=7)

BatchNorm

ReLU

MaxPool

Conv1d (kernel=1)

Conv1d (kernel=3)

BatchNorm

ReLU

Conv1d (kernel=3)

BatchNorm

ReLU

+ +

+

+

...

AdaptiveAvgPool

q

MLP

Dense

BatchNorm

ReLU

Dropout

Dense

Dense

...

ResNet

...

Figure 5. The ResNet model structure for UDN.
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3.3.3 Gated Recurrent Unit (GRU)

GRU is a type of recurrent neural network (RNN) introduced
by Cho et al. [2] in 2014 as a simplified version of the
long short-term memory (LSTM) network [9]. The GRU cell
contains two gates, a reset gate and an update gate, that
control the flow of information in the network. The reset
gate decides how much of the previous hidden state to forget,
while the update gate decides how much of the new input
to incorporate into the current hidden state. The use of the
reset and update gates allows the GRU to effectively capture
long-term dependencies in sequential data while avoiding the
vanishing gradient problem that can occur in traditional RNNs.
This makes GRU a powerful tool for a wide range of sequence
modeling tasks.
We use the GRU model shown in Figure 6, which is composed
of several GRU layers and an MLP. We concatenate the outputs
from the final GRU layer across all time steps and utilize them
as the inputs of MLP. For this study, we implement a model
including two GRU layers with hidden size of 64 and a three-
layer MLP with dense hidden size of 64, 20 and 1, respectively.

q

Dense

BatchNorm

ReLU

Dropout

Dense

Dense

...

GRU layer

GRU layer

. . .

Concat

input sequence

output sequence

MLP

Figure 6. The GRU model structure for UDN.

3.4 Combining Traditional Features

In conventional defect prediction methods, traditional hand-
crafted features such as complexity metrics and process met-
rics are shown to be informative in distinguishing buggy code
[15]. They are basically some numbers which describe certain
characteristics of codes from a holistic perspective. Typical
hand-crafted code features include Lines of Code (LOC),

Weighted Methods per Class (WMC), Depth of Inheritance
Tree (DIT), Number of Children (NOC), and McCabe com-
plexity measures (Max CC and Avg CC), etc. To take advan-
tage of these information, we directly concatenate the DNN-
learned feature vectors with traditional hand-crafted feature
vectors. Finally, the combined feature vectors are fed into the
subsequent regression model in order to generate defect count
prediction.

3.5 Training Prediction Models

Yang et al. [36] have demonstrated the effectiveness of ridge
regression (RR) for ranking-oriented SDP tasks. According
to the comparison results of 34 algorithms [39], when using
module as effort, random forest regression (RFR) performed
best under cross-release setting. Therefore, we use RR and
RFR as our final prediction generators. For comparison, we
use classical Linear Regression (LR) as the baseline. All re-
gression methods are implemented using the well-known open-
source machine learning library scikit-learn [25]. Parameters
of regression methods are set according to previous work [35],
[36].

3.6 Other Implementation Details

• Mean Squared Error (MSE) is used as loss function when
training DNN models. Our DNN models are trained in the
batch size of 32 and learning rate of 0.001 with the Yogi
optimizer [40], an improved version of Adam optimizer
[13], which alleviates the issue of Adam potentially diverg-
ing due to poor variance control. We use the existing Yogi
implementation from an open-source library2.

• In order to prevent over-training, we adopt L2 Regulariza-
tion with penalty factor of 0.001 and early stopping strategy
when training DNN models. We set the training epochs of
VGG, ResNet and GRU to 18, 15, 18, respectively.

4. EVALUATION

4.1 Evaluation Metrics

Following the previous ranking-oriented SDP research [27],
[38], [39], we use fault-percentile-average (FPA) metric [32]
to evaluate the prediction results of our proposed UDN frame-
work. FPA is essentially the average of propotions of actual
defects in the top m modules to the whole defects [35].
Specifically, considering k modules listed in increasing order
of predicted defect number as y1, y2, . . . , yk, and assuming
that ni is the actual defect number in the module i, n =
n1+n2+· · ·+nk is the total number of defects. The proportion
of the actual defects in the top m predicted modules to the
whole defects is

1

n

k∑
i=k−m+1

ni (3)

Then the FPA [32] of the k ranked modules is defined as:

2https://github.com/jettify/pytorch-optimizer
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1

k

k∑
m=1

1

n

k∑
i=k−m+1

ni (4)

A higher FPA means a better ranking and the module with
the most defects comes first. It is worth noting that although
the values of FPA lie between 0 and 1, the optimal FPA
value (when predicted results perfectly match the labels) are
consistently smaller than 1.
It would be not intuitive enough to compare different modules
via the originally defined FPA. To tackle the issue, we have
further defined a relative-FPA (rFPA) metric, which is the ratio
of the actual model’s FPA to the FPA of the ideal model
(whose predicted results are the actual labels), making the
rFPA of the best predictions equal to 1.

4.2 Dataset

For this study, we use the modified version of PROMISE
source code (PSC) dataset3 provided by Pan et al. [23], which
contains 14,066 files from 41 versions of 12 projects and is
slighlty different from the original PSC dataset [15] whose
given download link is currently invalid. In this work, we focus
on the ranking-oriented cross-version-WPDP task as stated
before. We use an older version as training set and a newer
version as testing set within a project. The 29 training groups
used in our experiments are listed in Table I. It is noticeable
that, in cross-version WPDP task, the data scale is relatively
small and a training set might be smaller than its test set,
which poses significant challenges for this task.
Additionally, the 20 hand-crafted features of each source file
that we use are provided by the dataset. Further details of
the hand-crafted features and the PROMISE dataset could be
found in the original paper [15].

4.3 Research Questions

In this paper, we attempt to investigate the following questions.

• What can our UDN bring? And Which DNN model can
extract the most effective features directly from source
code?
In order to answer this question, we use hand-crafted
features as the baseline, and we compare three combinations
of hand-crafted features and extracted features by UDN
respectively using VGG, ResNet and GRU as backbone
DNN models. We use three regression methods to construct
models.

• Which kind of features is most effective?
We choose the best model construction algorithm of LR,
RR, and RFR according to the above experiment, and the
best backbone DNN model, in order give a comprehensive
comparison of multiple kinds of features: hand-crafted fea-
tures, extracted features, and combination of both features.

3https://github.com/penguincwarrior/CNN-WPDP-APPSCI2019

TABLE I
TRAIN-TEST GROUPS OF PSC DATASET [23] USED IN OUR EXPERIMENTS.

Project Train Ver. Test Ver. #Train Files #Test Files

Ant

1.3 1.4 124 177

1.4 1.5 177 278

1.5 1.6 278 350

1.6 1.7 350 741

Camel
1.0 1.2 339 595

1.2 1.4 595 847

1.4 1.6 847 934

Ivy 1.1 1.4 111 241

1.4 2.0 241 352

JEdit

3.2 4.0 260 281

4.0 4.1 281 266

4.1 4.2 266 355

4.2 4.3 355 487

Log4j 1.0 1.1 119 104

1.1 1.2 104 194

Lucene 2.0 2.2 186 234

2.2 2.4 234 330

Pbeans 1.0 2.0 26 51

Poi
1.5 2.0 235 309

2.0 2.5 309 380

2.5 3.0 380 438

Synapse 1.0 1.1 157 205

1.1 1.2 205 256

Velocity 1.4 1.5 195 214

1.5 1.6 214 229

Xalan 2.4 2.5 676 754

2.5 2.6 754 875

Xerces init 1.2 162 436

1.2 1.3 436 446

4.4 Results and Discussions

4.4.1 Performance of Various Model Combinations

In this experiment, we treat models using solely hand-crafted
features as the baseline, and compare their ranking perfor-
mance with our models using the combined features, in order
to investigate whether the proposed approach can lead to per-
formance improvement. By comparing three backbone DNN
models (VGG, ResNet and GRU) and three model construction
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methods (LR, RR and RFR), we want to find the best backbone
DNN model and the best model construction methods. LR is
a classical regression method, and RR and RFR have been
demonstrated as the best methods for constructing ranking-
oriented SDP models according to some large-scale study [36],
[39]. Therefore, we attempt to implement our method based
on these previously validated regression models.
The testing FPA and rFPA (in the brackets) results of our
proposed UDN framework with various model combinations
on the modified PSC dataset are displayed in Table II.
The columns of ”regressor-only” record results of the model
constructed by the corresponding regressor using only hand-
crafted features. For example, the column of ”LR-only”
records results of LR using only hand-crafted features. The
columns of ”DNN+regressor” record results of the model
constructed by the corresponding regressor using combined
features of hand-crafted features and extracted features by
the corresponding DNN method. For example, the column of
”VGG+LR” records results of LR using combined features of
hand-crafted features and extracted features by VGG.
According to the results shown in Table II, the utilization of
deep neural network, in combination with various regression
models, can bring an enhancement of ranking performance. All
combinations have improved performance to varying degrees,
compared with the baseline performance. Among these com-
bination, the best average ranking performance of 0.715 FPA
(79.9% rFPA) is achieved using the combination of ResNet
and RFR, improving the baseline performance of solely RFR
by 0.014 FPA (1.1% rFPA), and by 0.046 FPA (4.9% rFPA)
compared with the baseline performance of solely simple LR.
From the obtained results of each model combination, we
can conclude that the choice of the final regression model
determines the maximum achievable performance and affects
the effectiveness of the proposed model combination strategy.
We investigate three commonly-used regression models in
ranking-oriented SDP task and find that their baseline per-
formance follows the order of LR (0.669 FPA) < RR (0.694
FPA) < RFR (0.701 FPA). The performance of their current
best combinations with different deep models also reflects
such trend, where VGG+LR (0.672 FPA) < GRU+RR (0.701
FPA) < ResNet+RFR (0.715 FPA). These results indicate that
different regression models may require different deep models
to achieve optimal performance.
Meanwhile, it can be found that such model combination
strategy leads to slightly different levels of improvement for
different regression models. From the current results, we could
see that ResNet+RFR improves the baseline RFR by 0.014
FPA, while ResNet+LR only improves the baseline LR by
0.001 FPA and ResNet+RR only improves the baseline RR
by 0.003 FPA. It might be the case that LR and RR are
both linear models and have limitations in dealing with the
significant distribution differences between deep features and
hand-crafted features due to the potential multi-collinearity
issue, while nonlinear models like RFR do not suffer from
such drawback.

4.4.2 Comparing Different Kinds of Features

According to Table II, models using RFR as the final regres-
sion model achieves the best performance comparing to the
other two regressors. In order to investigate the effectiveness
of the proposed feature combination strategy, we compare the
performance of combined features comparing to other feature
strategies on all three DNN models with RFR as the final
regressor. The feature strategies to be compared includes (1)
using hand-crafted features only, (2) using DNN-extracted
features only, and (3) using combined features. The comparing
results are listed in Table III.
According to Table III, the feature combing strategy achieves
the best overall performance with all kinds of DNN backbone,
comparing to the hand-crafted-only or DNN-extracted-only
feature strategy. Comparing to the baseline overall perfor-
mance of hand-crafted-only features (0.701 FPA), all the
DNN-extracted-only features deliver poorer overall perfor-
mances (0.698, 0.609, 0.697 for VGG, GRU and ResNet
respectively). Such results indicate features extracted by deep
neural models do not necessarily guarantee a performance
boost comparing to the hand-crafted statistical features. Con-
sidering the rather small data scale of the commonly used
SDP dataset like PROMISE [15], deep models are susceptible
to the potential issue of overfitting. Meanwhile, the combined
features with all three DNN backbones outperform the baseline
hand-crafted-only feature in the overall ranking performance
(0.709, 0.712, 0.715 for VGG, GRU and ResNet respectively).
It should be noted that the combined features with ResNet
backbone and RFR regressor achieves the best overall FPA
(0.715), while GRU-backbone combined feature wins most
of the train groups (10 out of 29) and achieves relatively
similar overall performance (0.712 FPA) with the best record.
These results provide strong evidence of the universality of
the proposed feature combining strategy, that all kinds of deep
neural models like CNN and RNN can benefit from it.

5. RELATED WORK

5.1 Software Defect Prediction

Software defect prediction (SDP) is an active research field in
the area of software engineering [11], [17], [20], [30]. Most
SDP methods tend to consider SDP as binary classification
problem, which focuses on predicting whether defects exist in
a specific area of source code or not [11], [15], [23], [30], [41].
In recent years, there have been some ranking-oriented studies
[27], [38], [39] that took number of defects within software
modules into account and ranked software modules by the
predicted number of defects. Many early studies [11], [15],
[21] focused on manually designing new discriminative fea-
tures or new combinations of features from labeled historical
defect data in order to capture holistic software characteristics,
for example, Halstead features [6], McCabe features [16], and
Chidamber and Kemerer (CK) features [8], etc.
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TABLE II
FPA AND RFPA (IN THE BRACKETS) RESULTS OF OUR PROPOSED UDN WITH VARIOUS MODEL COMBINATIONS ON THE MODIFIED PSC DATASET,

WHERE ”XX-ONLY” MODELS ONLY USE HAND-CRAFTED FEATURES.

Train Group LR-only VGG+LR GRU+LR ResNet+LR RR-only VGG+RR GRU+RR ResNet+RR RFR-only VGG+RFR GRU++RFR ResNet+RFR

1.3-1.4
0.544

(60.1%)
0.535

(59.1%)
0.544

(60.2%)
0.513

(56.6%)
0.577

(63.8%)
0.568

(62.8%)
0.573

(63.4%)
0.539

(59.6%)
0.577

(63.8%)
0.543

(60.0%)
0.549

(60.7%)
0.564

(62.3%)

1.4-1.5
0.638

(66.6%)
0.571

(59.7%)
0.602

(62.9%)
0.636

(66.4%)
0.665

(69.5%)
0.665

(69.5%)
0.677

(70.8%)
0.682

(71.3%)
0.606

(63.3%)
0.512

(53.5%)
0.574

(60.0%)
0.584

(61.0%)

1.5-1.6
0.777

(84.8%)
0.658

(71.7%)
0.724

(79.0%)
0.692

(75.5%)
0.791

(86.3%)
0.755

(82.3%)
0.787

(85.8%)
0.746

(81.4%)
0.725

(79.1%)
0.737

(80.4%)
0.738

(80.4%)
0.749

(81.7%)Ant

1.6-1.7
0.794

(85.4%)
0.767

(82.5%)
0.765

(82.3%)
0.778

(83.6%)
0.804

(86.4%)
0.794

(85.3%)
0.805

(86.6%)
0.797

(85.6%)
0.805

(86.5%)
0.798

(85.8%)
0.794

(85.4%)
0.800

(86.0%)

1.0-1.2
0.615

(69.2%)
0.525

(59.0%)
0.512

(57.6%)
0.577

(64.9%)
0.645

(72.5%)
0.610

(68.6%)
0.642

(72.2%)
0.634

(71.3%)
0.658

(73.9%)
0.639

(71.9%)
0.629

(70.7%)
0.642

(72.2%)

1.2-1.4
0.678

(71.4%)
0.801

(84.2%)
0.800

(84.2%)
0.784

(82.5%)
0.756

(79.6%)
0.799

(84.1%)
0.822

(86.5%)
0.783

(82.4%)
0.778

(81.9%)
0.814

(85.6%)
0.827

(87.0%)
0.805

(84.7%)
Camel

1.4-1.6
0.713

(75.6%)
0.742

(78.6%)
0.770

(81.6%)
0.787

(83.4%)
0.737

(78.1%)
0.800

(84.8%)
0.782

(82.8%)
0.791

(83.8%)
0.743

(78.8%)
0.778

(82.5%)
0.794

(84.1%)
0.778

(82.5%)

1.1-1.4
0.728

(74.9%)
0.833

(85.8%)
0.834

(85.9%)
0.826

(85.0%)
0.744

(76.6%)
0.802

(82.6%)
0.812

(83.7%)
0.835

(86.0%)
0.746

(76.8%)
0.787

(81.0%)
0.808

(83.3%)
0.836

(86.1%)
Ivy 1.4-2.0

0.470
(49.2%)

0.600
(62.7%)

0.668
(69.8%)

0.569
(59.6%)

0.577
(60.3%)

0.683
(71.5%)

0.703
(73.5%)

0.707
(74.0%)

0.723
(75.7%)

0.768
(80.3%)

0.770
(80.6%)

0.772
(80.7%)

3.2-4.0
0.847

(89.8%)
0.853

(90.4%)
0.862

(91.5%)
0.787

(83.5%)
0.845

(89.6%)
0.866

(91.8%)
0.876

(92.9%)
0.851

(90.3%)
0.854

(90.6%)
0.862

(91.4%)
0.867

(92.0%)
0.864

(91.6%)

4.0-4.1
0.801

(85.9%)
0.833

(89.3%)
0.815

(87.4%)
0.796

(85.4%)
0.805

(86.3%)
0.848

(90.9%)
0.796

(85.4%)
0.805

(86.4%)
0.839

(89.9%)
0.843

(90.4%)
0.841

(90.2%)
0.855

(91.7%)

4.1-4.2
0.872

(90.7%)
0.826

(85.9%)
0.593

(61.7%)
0.836

(87.0%)
0.874

(90.9%)
0.871

(90.5%)
0.879

(91.5%)
0.876

(91.1%)
0.859

(89.3%)
0.864

(89.8%)
0.869

(90.4%)
0.873

(90.8%)JEdit

4.2-4.3
0.592

(59.8%)
0.680

(68.7%)
0.723

(72.9%)
0.656

(66.2%)
0.588

(59.3%)
0.584

(58.9%)
0.668

(67.4%)
0.561

(56.6%)
0.616

(62.2%)
0.773

(78.1%)
0.704

(71.1%)
0.692

(69.8%)

1.0-1.1
0.757

(84.8%)
0.771

(86.3%)
0.744

(83.4%)
0.749

(83.9%)
0.787

(88.2%)
0.812

(91.0%)
0.767

(86.0%)
0.801

(89.8%)
0.748

(83.8%)
0.780

(87.4%)
0.787

(88.1%)
0.775

(86.8%)
Log4j 1.1-1.2

0.558
(87.4%)

0.541
(84.8%)

0.554
(86.8%)

0.544
(85.3%)

0.558
(87.3%)

0.558
(87.3%)

0.561
(87.8%)

0.554
(86.8%)

0.552
(86.4%)

0.556
(87.0%)

0.561
(87.9%)

0.551
(86.3%)

2.0-2.2
0.714

(85.2%)
0.694

(82.8%)
0.660

(78.7%)
0.698

(83.2%)
0.712

(84.9%)
0.679

(81.0%)
0.699

(83.4%)
0.694

(82.8%)
0.709

(84.6%)
0.710

(84.6%)
0.710

(84.7%)
0.710

(84.6%)
Lucene 2.2-2.4

0.627
(75.2%)

0.609
(73.0%)

0.616
(73.9%)

0.624
(74.9%)

0.668
(80.2%)

0.644
(77.2%)

0.620
(74.4%)

0.623
(74.7%)

0.642
(77.1%)

0.628
(75.3%)

0.631
(75.7%)

0.654
(78.4%)

Pbeans 1.0-2.0
0.709

(75.8%)
0.820

(87.6%)
0.710

(75.9%)
0.593

(63.4%)
0.781

(83.5%)
0.777

(83.1%)
0.776

(83.0%)
0.779

(83.3%)
0.756

(80.9%)
0.756

(80.8%)
0.767

(82.0%)
0.766

(81.9%)

1.5-2.0
0.626

(66.2%)
0.577

(61.1%)
0.597

(63.2%)
0.600

(63.5%)
0.700

(74.1%)
0.579

(61.3%)
0.675

(71.4%)
0.713

(75.5%)
0.689

(72.9%)
0.668

(70.7%)
0.646

(68.4%)
0.718

(76.0%)

2.0-2.5
0.467

(61.8%)
0.473

(62.5%)
0.500

(66.1%)
0.503

(66.4%)
0.501

(66.3%)
0.493

(65.2%)
0.501

(66.3%)
0.508

(67.1%)
0.502

(66.4%)
0.523

(69.1%)
0.509

(67.3%)
0.498

(65.9%)
Poi

2.5-3.0
0.659

(82.1%)
0.660

(82.3%)
0.646

(80.5%)
0.663

(82.6%)
0.691

(86.1%)
0.666

(83.0%)
0.645

(80.4%)
0.674

(84.0%)
0.678

(84.5%)
0.665

(82.9%)
0.682

(85.0%)
0.675

(84.1%)

1.0-1.1
0.623

(68.5%)
0.608

(66.8%)
0.714

(78.5%)
0.682

(74.9%)
0.741

(81.4%)
0.692

(76.0%)
0.719

(79.0%)
0.731

(80.4%)
0.708

(77.8%)
0.707

(77.6%)
0.721

(79.2%)
0.735

(80.8%)
Synapse 1.1-1.2

0.652
(73.8%)

0.622
(70.3%)

0.679
(76.8%)

0.637
(72.0%)

0.663
(74.9%)

0.689
(77.9%)

0.703
(79.5%)

0.657
(74.3%)

0.678
(76.7%)

0.676
(76.5%)

0.696
(78.7%)

0.667
(75.5%)

1.4-1.5
0.620

(77.7%)
0.632

(79.2%)
0.670

(83.9%)
0.636

(79.8%)
0.621

(77.8%)
0.641

(80.4%)
0.638

(80.0%)
0.646

(80.9%)
0.681

(85.3%)
0.650

(81.5%)
0.690

(86.4%)
0.650

(81.4%)
Velocity 1.5-1.6

0.760
(84.3%)

0.751
(83.4%)

0.685
(76.1%)

0.720
(79.9%)

0.757
(84.0%)

0.764
(84.8%)

0.766
(85.1%)

0.764
(84.9%)

0.758
(84.2%)

0.757
(84.1%)

0.753
(83.6%)

0.757
(84.1%)

2.4-2.5
0.626

(77.2%)
0.619

(76.3%)
0.619

(76.3%)
0.628

(77.5%)
0.609

(75.1%)
0.622

(76.7%)
0.618

(76.2%)
0.621

(76.5%)
0.594

(73.2%)
0.603

(74.3%)
0.589

(72.6%)
0.598

(73.7%)
Xalan 2.5-2.6

0.647
(78.2%)

0.650
(78.6%)

0.628
(75.9%)

0.670
(80.9%)

0.650
(78.5%)

0.668
(80.8%)

0.652
(78.7%)

0.651
(78.7%)

0.655
(79.1%)

0.645
(78.0%)

0.665
(80.4%)

0.662
(80.0%)

init-1.2
0.719

(74.9%)
0.703

(73.2%)
0.664

(69.2%)
0.669

(69.7%)
0.755

(78.6%)
0.703

(73.2%)
0.642

(66.9%)
0.660

(68.7%)
0.724

(75.4%)
0.765

(79.7%)
0.757

(78.8%)
0.756

(78.7%)
Xerces 1.2-1.3

0.561
(59.5%)

0.530
(56.2%)

0.546
(57.9%)

0.587
(62.3%)

0.524
(55.6%)

0.631
(67.0%)

0.534
(56.6%)

0.529
(56.1%)

0.729
(77.3%)

0.745
(79.0%)

0.729
(77.4%)

0.742
(78.7%)

Average
0.669

(75.0%)
0.672

(75.2%)
0.670

(75.1%)
0.670

(75.1%)
0.694

(77.8%)
0.699

(78.3%)
0.701

(78.5%)
0.697

(78.1%)
0.701

(78.5%)
0.709

(79.3%)
0.712

(79.7%)
0.715

(79.9%)

5.2 Deep Learning Based SDP methods

Since the advent of AlexNet [14] in 2012, deep learning
has found widespread applications in various fields including
software engineering. During recent years, many researchers
have explored the use of deep learning in software defect
prediction. Yang et al. [37] proposed a deep learning method
for just-in-time defect prediction, which leveraged deep belief
network (DBN) model to build a set of expressive features
from the selected 14 basic change measures regarding code
change. Li et al. [15] proposed a CNN-based defect prediction
model, which used a CNN model to extract features from
source code ASTs and combined them with 20 traditional
hand-crafted features. Their results outperformed the DBN

model [37] stated before and this is the very work that has
provided the greatest inspiration for our current research. Two
RNN-based studies [4], [34] employed LSTM and tree-base
LSTM respectively to predict defects taking AST sequences
as inputs. Pan et al. [23] used a deeper models on the
basis of Li’s CNN [15] to predict defects without employing
any hand-crafted feature. These studies focused on a binary
classification task rather than a ranking-oriented SDP problem.
Some researchers also applied deep learning methods for
solving ranking-oriented SDP problems, such as Lei et al.’
work [27] and Meetesh and Pradeep’s work [22]. However,
they extracted features from traditional hand-crafted features
instead of source code.
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TABLE III
FPA AND RFPA (IN THE BRACKETS) RESULTS OF MODELS USING DIFFERENT FEATURE STRATEGIES, WITH RFR AS THE FINAL REGRESSOR.

Train Group Hand-crafted
Only

VGG-extracted
Only

VGG
Combined

GRU-extracted
Only

GRU
Combined

ResNet-extracted
Only

ResNet
Combined

1.3-1.4
0.577

(63.8%)
0.509

(56.2%)
0.543

(60.0%)
0.541

(59.7%)
0.549

(60.7%)
0.524

(57.9%)
0.564

(62.3%)

1.4-1.5
0.606

(63.3%)
0.518

(54.2%)
0.512

(53.5%)
0.588

(61.5%)
0.574

(60.0%)
0.514

(53.7%)
0.584

(61.0%)

1.5-1.6
0.725

(79.1%)
0.730

(79.6%)
0.737

(80.4%)
0.720

(78.5%)
0.738

(80.4%)
0.727

(79.2%)
0.749

(81.7%)Ant

1.6-1.7
0.805

(86.5%)
0.796

(85.6%)
0.798

(85.8%)
0.783

(84.1%)
0.794

(85.4%)
0.812

(87.3%)
0.800

(86.0%)

1.0-1.2
0.658

(73.9%)
0.590

(66.3%)
0.639

(71.9%)
0.564

(63.4%)
0.629

(70.7%)
0.569

(63.9%)
0.642

(72.2%)

1.2-1.4
0.778

(81.9%)
0.800

(84.2%)
0.814

(85.6%)
0.819

(86.2%)
0.827

(87.0%)
0.785

(82.6%)
0.805

(84.7%)
Camel

1.4-1.6
0.743

(78.8%)
0.772

(81.8%)
0.778

(82.5%)
0.783

(82.9%)
0.794

(84.1%)
0.789

(83.6%)
0.778

(82.5%)

1.1-1.4
0.746

(76.8%)
0.772

(79.6%)
0.787

(81.0%)
0.837

(86.2%)
0.808

(83.3%)
0.855

(88.1%)
0.836

(86.1%)
Ivy 1.4-2.0

0.723
(75.7%)

0.778
(81.4%)

0.768
(80.3%)

0.772
(80.8%)

0.770
(80.6%)

0.698
(73.0%)

0.772
(80.7%)

3.2-4.0
0.854

(90.6%)
0.859

(91.1%)
0.862

(91.4%)
0.862

(91.4%)
0.867

(92.0%)
0.845

(89.6%)
0.864

(91.6%)

4.0-4.1
0.839

(89.9%)
0.830

(89.1%)
0.843

(90.4%)
0.833

(89.3%)
0.841

(90.2%)
0.831

(89.1%)
0.855

(91.7%)

4.1-4.2
0.859

(89.3%)
0.867

(90.1%)
0.864

(89.8%)
0.859

(89.3%)
0.869

(90.4%)
0.868

(90.3%)
0.873

(90.8%)JEdit

4.2-4.3
0.616

(62.2%)
0.743

(75.0%)
0.773

(78.1%)
0.781

(78.8%)
0.704

(71.1%)
0.725

(73.2%)
0.692

(69.8%)

1.0-1.1
0.748

(83.8%)
0.777

(87.0%)
0.780

(87.4%)
0.782

(87.6%)
0.787

(88.1%)
0.775

(86.8%)
0.775

(86.8%)
Log4j 1.1-1.2

0.552
(86.4%)

0.549
(86.1%)

0.556
(87.0%)

0.557
(87.3%)

0.561
(87.9%)

0.552
(86.4%)

0.551
(86.3%)

2.0-2.2
0.709

(84.6%)
0.710

(84.7%)
0.710

(84.6%)
0.713

(85.0%)
0.710

(84.7%)
0.700

(83.5%)
0.710

(84.6%)
Lucene 2.2-2.4

0.642
(77.1%)

0.613
(73.5%)

0.628
(75.3%)

0.624
(74.8%)

0.631
(75.7%)

0.658
(78.9%)

0.654
(78.4%)

Pbeans 1.0-2.0
0.756

(80.9%)
0.785

(84.0%)
0.756

(80.8%)
0.769

(82.2%)
0.767

(82.0%)
0.765

(81.8%)
0.766

(81.9%)

1.5-2.0
0.689

(72.9%)
0.682

(72.2%)
0.668

(70.7%)
0.664

(70.3%)
0.646

(68.4%)
0.713

(75.5%)
0.718

(76.0%)

2.0-2.5
0.502

(66.4%)
0.525

(69.4%)
0.523

(69.1%)
0.528

(69.8%)
0.509

(67.3%)
0.591

(78.2%)
0.498

(65.9%)
Poi

2.5-3.0
0.678

(84.5%)
0.664

(82.8%)
0.665

(82.9%)
0.669

(83.4%)
0.682

(85.0%)
0.660

(82.3%)
0.675

(84.1%)

1.0-1.1
0.708

(77.8%)
0.651

(71.6%)
0.707

(77.6%)
0.650

(71.4%)
0.721

(79.2%)
0.615

(67.6%)
0.735

(80.8%)
Synapse 1.1-1.2

0.678
(76.7%)

0.669
(75.7%)

0.676
(76.5%)

0.680
(76.9%)

0.696
(78.7%)

0.678
(76.7%)

0.667
(75.5%)

1.4-1.5
0.681

(85.3%)
0.643

(80.5%)
0.650

(81.5%)
0.621

(77.8%)
0.690

(86.4%)
0.671

(84.1%)
0.650

(81.4%)
Velocity 1.5-1.6

0.758
(84.2%)

0.754
(83.7%)

0.757
(84.1%)

0.741
(82.2%)

0.753
(83.6%)

0.744
(82.6%)

0.757
(84.1%)

2.4-2.5
0.594

(73.2%)
0.609

(75.1%)
0.603

(74.3%)
0.600

(74.0%)
0.589

(72.6%)
0.615

(75.8%)
0.598

(73.7%)
Xalan 2.5-2.6

0.655
(79.1%)

0.651
(78.7%)

0.645
(78.0%)

0.654
(79.1%)

0.665
(80.4%)

0.647
(78.1%)

0.662
(80.0%)

init-1.2
0.724

(75.4%)
0.638

(67.6%)
0.745

(79.0%)
0.538

(57.0%)
0.729

(77.4%)
0.757

(78.8%)
0.756

(78.7%)
Xerces 1.2-1.3

0.729
(77.3%)

0.756
(78.7%)

0.765
(79.7%)

0.750
(78.1%)

0.757
(78.8%)

0.537
(57.0%)

0.742
(78.7%)

Average
0.701

(78.5%)
0.698

(78.1%)
0.709

(79.3%)
0.699

(78.2%)
0.712

(79.7%)
0.697

(78.1%)
0.715

(79.9%)

6. THREATS TO VALIDITY

We implemented our DNN models using Pytorch and the
predicted results might be diverse when implementing with
other deep learning platforms like Tensorflow [1] or Keras [3].
The parameter selections for models are mostly based on trial-
and-error and empirical knowledge without too much careful
consideration. Hence the currently selected parameters may
not be the most optimal for our models.
For this study, we focus on the ranking-oriented cross-version-
WPDP task. There are within-version-WPDP and CPDP,
which means that our approach has only been validated within
a limited range and requires further validation on all kinds of
SDP tasks. Additionally, we conducted our experiments only
on the modified PSC dataset provided by [23], which is only
a small part of all datasets.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a universal ranking-oriented software
defect prediction framework called United Deep Network
(UDN), which first extracts features from source code using
deep learning for ranking-oriented SDP. UDN utilizes deep
neural networks (DNN) like CNN and RNN for automated
feature generation from source code with the syntactic and
structural information preserved, and can combine DNN-
learned features with discriminative traditional hand-crafted
features.
We conduct experiments over 29 sets of open-source defect
prediction data using the proposed feature combination strat-
egy, and compare different combinations of backbone DNNs
and regressors, as well as different feature strategies. The ex-
perimental results prove that the proposed feature combination
strategy can significantly enhance the ranking performance of
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nonlinear regression models like RFR, and all sorts of deep
neural models like VGG, GRU and ResNet can benefit from
this strategy.
In our future work, we will investigate the strategy on a wider
range of deep neural network like transformer and attempt
to explore the best combination of the DNN and regression
model. We will also try to extend this strategy to cross-
project defect prediction. Additionally, we will make attempts
to investigate diverse approaches for utilizing hand-crafted
features.

ACKNOWLEDGMENT

This work is supported by Higher Education Stability Support
Program General Project (Grant No. 20220715114836001) .
This work is also supported by National Natural Science Foun-
dation of China (Grants No. 61602534) and the Guangdong
Provincial Key Laboratory (Grant No. 2020B121201001).

REFERENCES

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion
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