
FINDGATE: Fine-grained Defect Prediction Based on a Heterogeneous Discrete
Code Graph-guided Attention Transformer

Jiaxi Xu1,2, Ping Chen1,2,*, Banghu Yin3,*, Zhichang Huang1,2 and Qiaochun Qiu1,2

1 China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, Guangdong, China
2 The Ministry of Industry and Information Technology Key Laboratory of Performance and Reliability Testing and

Evaluation for Basic Software and Hardware, Guangzhou, Guangdong, China
3 College of System Engineering, National University of Defense Technology, Changsha, Hunan, China

xujiaxi@ceprei.com, chenping@ceprei.com, bhyin@nudt.edu.cn, huangzhichang@ceprei.com, qiuqiaochun@163.com
*corresponding author

Abstract—Recognizing defects in source code through deep
learning methods has become an important research subject
for improving software quality. Although Transformer-based
models such as CodeBERT have demonstrated impressive
performance improvement in defect prediction tasks, models
relying on single-structured input data, such as sequences,
have limited ability to capture the code's structural features.
Treating code simply as text overlooks essential information
such as control dependencies, data dependencies, and
syntactic structures inherent in the code. This paper proposes
the Heterogeneous Discrete Code Graph (HDCG), which
assigns structural information to code tokens from multiple
perspectives. We also introduce an improved transformer
model FINEGATE that leverages HDCG to guide self-
attention. The experiments demonstrate that FINEGATE can
effectively predict source code defects and perform fine-
grained defect localization.

Keywords- Software defect prediction; Code graph; Fine-
grained; Transformer; Code structure

1. INTRODUCTION
 With the rapid growth in software scale and complexity
and the acceleration of software iteration, the difficulty of
identifying and locating software defects through testing has
increased significantly, leading to exponential growth in time
and resource costs. In China, billions of dollars are spent
annually to support software testing. Software defect
prediction (SDP) has emerged as one of the fastest-growing
and most widely recognized technologies in the field of
software reliability in the past decade. Currently, machine
learning, deep learning, and other artificial intelligence
techniques have been extensively applied by researchers in
software defect prediction. By learning from historical defect
knowledge, preliminary analysis and diagnosis of software
defect situations have been conducted, providing guidance for
software testing, reducing costs, and improving cost-
effectiveness.

1.1. Motivation
Early software defect prediction methods primarily

involved manually defining and extracting defect features
from software. These features were then used to train machine

learning models, which were subsequently utilized for
predicting defects in new versions of software. In recent years,
transformer-based sequential deep learning models, which
have been rapidly developed, have demonstrated impressive
performance across various domains. In the field of software,
a series of Transformer-based methods, led by CodeBERT as
a representative, have emerged. Instead of manual feature
engineering, these methods treat software code as textual data
for learning and representation, resulting in improved
performance in software defect prediction tasks.

Represented by CodeBERT, these methods typically
discretize software code into token sequences, which are then
input into a Transformer model with an embedding layer and
self-attention modules. The fundamental idea behind these
methods is to treat software code as a textual document,
extract feature representations using a Transformer model,
and then classify them with a multilayer perceptron. These
end-to-end approaches effectively utilize a pretrained model
to learn semantic information from code, eliminating the
requirement of manual feature engineering, which shows
improved performance in SDP tasks. However, unlike
ordinary text, code possesses distinct structural characteristics.
The sequential order of code lines alone cannot sufficiently
represent those structures, which is often overlooked in these
methods.

This paper proposes the Heterogeneous Discrete Code
Graph (HDCG) to enhance the structural information of code
tokens without introducing additional nodes, which addresses
the abovementioned issues. Structural information is
introduced through the improved Graph-guided Attention
Transformer Enhanced (GATE) model. Moreover, to achieve
fine-grained defect localization, we reference and enhance the
method proposed by Liu et al., computing risk scores for code
lines through multidimensional attention.

1.2. Contribution
Overall, this paper mainly includes the following

contributions:
1. The paper introduces the HDCG to achieve structural

information enhancement for code tokens, addressing
structure information absent issues in current
Transformer-based SDP methods while avoiding
introducing redundant information to the input sequence.

72

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

2693-9177/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS60937.2023.00017

2. The GATE model is proposed, which utilizes structural
information and enhances SDP performance by guiding
self-attention using HDCG.

3. FINDGATE, an improved Fine-grained Defect
Localization method based on the GATE model, is
proposed. This approach is capable of training the model
with function-level data and achieves defect localization
with a finer granularity.

4. A comprehensive set of experiments was conducted on
a large-scale dataset to demonstrate the effectiveness of
the proposed FINDGATE method. The comparative
experimental results demonstrate that our proposed
method achieves better or comparable performance to
the current state-of-the-art methods in defect prediction
and fine-grained defect localization. The results of the
ablation experiments show that the multidimensional-
attention-based localization method achieves a
significant improvement compared to the single-
dimensional-attention-based method.

1.3. Paper Organization
 The remainder of the paper is organized as follows:
Section 2 gives brief reviews of software defect prediction and
transformer-based methods. Section 3 introduces our
proposed method FINDGATE. Section 4 provides the
experimental setting. The results are provided and analyzed in
Section 5. Section 6 discloses the threats to validity. Section
VII draws the conclusions.

2. RELATED WORKS
 This section mainly discusses the current literature work
in the field of software defect prediction based on machine
learning, graph learning-based models, and fine-grained SDP.
Software defect prediction:

 Machine learning-based SDP became mainstream in this
domain after the first decade of the 21st century. According to
Hata et al.[1], machine learning-based methods accounted for
66% of the total relevant research papers in 2009. Traditional
ML-based SDP methods typically involve historical data
collection and defect labeling, manually designed metric
extraction, model training with feature data, and prediction.
Later with the advancement of deep learning techniques,
which gradually replaced feature engineering, sequence
models such as RNNs were applied in SDP.
Graph-based SDP:

Based on architectures such as RNN, sequence models
usually consider code as token sequences without taking the
software structure into account. With the rise of graph-based
learning, researchers began to focus on the graph
representation of code. For instance, Li et al. proposed a series
of methods such as SyseVR[2] and VulDeePecker[3], which
incorporate code graph attributes such as data flow graphs into
sequence models through traversal. To address the low
adaptability of sequence models to graph structures, many
works have introduced graph representation learning
algorithms, such as graph convolutional neural networks
(GCNs), into SDP tasks (e.g., GNN-DP[4], Reveal[5],
Devign[6] and code2vul[7]). The methods above, which focus

on defect prediction at the file-level or function-level, have not
yet provided solutions for fine-grained SDP.
Transformer-based SDP:

Mainstream defect prediction methods cover a large area
in their predictions, making it highly challenging for code
reviewers to inspect the entire region within a limited time and
effort. According to statistics[8], less than 3% of the lines of
code in defective source files were actually defective. In the
2020s, to guide testing developers and code reviewers to focus
their attention on smaller high-risk areas, some solutions have
been proposed from the perspectives of training data and
prediction results to narrow the scope of predictions.

Some researchers have approached narrowing the data
range by using finer-grained samples. Liu et al.[9] slice the
code to reduce the sample size and introduce intermediate
code to construct code representations for vulnerability
detection. Our previous work ACGDP[4] proposed a method
of graph representation learning by extracting subgraphs
through static analysis on Augmented-CPGs. Wartschinski et
al.[10] introduced VUDENC, which utilizes a sliding window
to capture token sequences as input for LSTM. With the rise
of transformer-based models, Le et al.[11] combined program
slicing methods with the CodeBERT model.

Another group of researchers has focused on further
explaining the prediction results to achieve fine-grained
localization from coarse-grained predictions. IVDetect[12]
uses the FA-GCN method to predict function-level
vulnerabilities and employs GNNExplainer to pinpoint fine-
grained locations. LineVD[13] utilizes CodeBERT and GAT
to learn function-level and statement-level representations,
respectively, and combines the results to achieve statement-
level judgments. JITLINE[14] and LINEDP[8] employ the
Local Interpretable Model-agnostic Explanations (LIME)
technique for line-level computation. With the widespread use
of attention mechanisms, works such as [15], DeeplineDP[16],
and DPEA[17] utilize attention mechanisms for line-level
scoring.

Balancing prediction accuracy and fine-grained
localization data narrowing is challenging. Therefore, we are
more optimistic about the approaches that focus on explaining
the prediction results. In our work, we achieve fine-grained
localization by interpreting the results of the graph-guided
model.

3. METHODOLOGY
In this section, we introduce our novel fine-grained

software defect prediction method based on Heterogeneous
Discrete Code Graph-guided Attention Transformer Enhance
model (FINDGATE), with three main components:
Heterogeneous Discrete Code Graph (HDCG), graph-guided-
attention transformer enhance model (GATE) and GATE-
based fine-grained defect localization method (FIND).

3.1. Framework
This section introduces the framework of our method,

which is divided into three stages, as shown in Figure 1: 1.
Graph construction of HDCG; 2. GATE model-based defect
prediction; 3. fine-grained defect localization.

73

In the first stage, the source code is parsed into an abstract
syntax tree (AST) and discretized into tokens. Tokens are
mapped with AST leaf nodes through position. The
Augmented-CPG is built as described in our previous work[4].
The Augmented-CPG is collapsed, keeping only the leaf
nodes. Heterogeneous Discrete Code Graph was then yielded
by expanding AST leaves into token nodes based on leaf-
tokens map.

In the second stage, we propose an enhanced transformer-
based SDP model by utilizing HDCG to guide self-attention.
The HDCG captures different types of relationships and
guides self-attention modules in different encoders to generate
a comprehensive source code representation. A multilayer
perceptron (MLP) is employed to classify the generated
representation and perform the defect prediction task.

In the third stage, fine-grained defect localization was
performed by utilizing the self-attention values from each
graph-guided encoder based on the hypothesis “tokens that are
most contributed to the predictions are likely to be vulnerable”
proposed by Fu et al.[15] For each encoder, token-attention
scores were calculated by heads-sum and layers-sum.
Statement-attention scores were obtained by progressively
aggregating the attention scores based on the leaf-token map
and statement-leaf map. The statement scores from each
encoder were summed up and ranked to indicate defect risks.

3.2. Graph construction
As mentioned earlier, a series of Transformer-based

models, with CodeBERT[18] as a representative, have
achieved remarkable performance in the SDP task. However,
numerous studies have indicated that code structural
information plays a significant role in code representation and
SDP tasks. Non-Euclidean structured graphs are a suitable

form for structural information reinforcement of code token
sequences. As transformer-based models typically struggle to
process graph data as input directly, methods such as
GraphCodeBERT[19] have been attempted. These
approaches often convert graph data nodes into sequences
through traversal, inevitably leading to some structural
information loss. On the other hand, appending the graph node
sequence to the original token sequence increases the length
of the input, limiting the length of the code token sequence in
models of equal capacity. For example, CodeBERT-base can
accept 512 code tokens in a sample at maximum, while
GraphCodeBERT-base with the same model size can only
accept 256 code tokens, half of CodeBERT-base’s capacity,
which significantly limits the applicability of the model.

We propose a graph representation called Heterogeneous
Discrete Code Graph (HDCG), where code tokens serve as
nodes and various structural relationships are attached. HDCG
consists solely of code token nodes, and the input sequence
fed into the model does not contain any redundant nodes,
effectively addressing the issue of complex output sequences
in methods such as GraphCodeBERT. The pure input
sequence composed of code tokens also plays a better role in
supporting the subsequent fine-grained defect localization
based on graph-guided attention. The construction of HDCG
involves the following steps: 1. Code tokenization, 2. Abstract
Syntax Tree (AST) generation, 3. Leaf-token mapping, 4.
Augmented-CPG generation, and 5. HDCG construction.
Code tokenization:

In the field of language processing, models require a
vocabulary to represent sentences during both training and
prediction. The total vocabulary size typically ranges from
approximately 170 thousand to 1 million words in natural
language processing (NLP). It is usually several orders of

Figure 1. Overview of proposed approach FINDGATE

74

magnitude higher in program language processing (PLP). In
this paper, the Byte Pair Encoding (BPE) algorithm, originally
developed for data compression, is used for code tokenization.
BPE iteratively identifies the most frequent byte pairs in the
data and merges them into a new "byte" token. By applying
BPE tokenization, the size of the vocabulary is adequately
reduced and “Out of Vocabulary” (OOV) words are
represented with token combinations. In this paper, we
employed a BPE tokenizer pretrained on CodeSearchNet[20]
to generate a tokenizer specifically suitable for programming
languages.
AST generation:

To investigate the structural representation of code,
researchers have used various code abstraction graphs in SDP,
with abstract syntax trees (ASTs) being one of the most widely
used. There are already some tools available for generating
ASTs for different programming languages. To support
different programming languages and enable language-
agnostic analysis, we employed the open-source tool tree-
sitter for AST generation and standardized the results into
language-agnostic directed acyclic graphs (DAGs) Gast =
(Vast, East).

Node vast = (src, pos, typev) ∈ Vast is represented as a
triplet, where src denotes the source code, pos = (s, e) =
�(linestart, colstart), (lineend, colend)� represents the position
in the source code, and typev denotes the node type. Edge
east = �vsource, vtarget, typee� ∈ East is defined as a triplet
consisting of the source node vsource, the target node vtarget,
and the edge typetypee = AST.

𝐿𝐿 = { 𝑣𝑣𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|𝑣𝑣𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 , 0 < 𝑖𝑖 < 𝑚𝑚 } represents the
subset of leaf-nodes (leaves) in the AST, and S = { s𝑖𝑖|0 < i <
n} denotes the set of statements in the source code. The i-th
statement si = �vjleaf, vj+1leaf, … � is composed of leaf nodes
vjleaf, vj+1leaf, … . Matrix As−l ∈ Rm×n represents the mapping
relationship between statements and leaf nodes. Each element
𝑎𝑎𝑖𝑖𝑖𝑖𝑠𝑠−𝑙𝑙 in the matrix is defined as follows:

 𝑎𝑎𝑖𝑖𝑖𝑖𝑠𝑠−𝑙𝑙 = �1, if 𝑣𝑣𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 𝑠𝑠𝑗𝑗

0, else
 (1)

Leaf-token mapping:
To incorporate the graph structure into tokens, it is

necessary to establish a mapping between the leaves and
tokens. Some studies have simply concatenated the tokenized
results of the leaf nodes and tokens, treating them as a single
token sequence. Some studies have simply linked leaves and
tokens by tokenizing and concatenating leaf-nodes' source
code instead of tokenizing the complete code. However, we
found that this kind of approach results in differences with
tokens generated directly from the complete source code. That
might not affect the performance of tasks like code
summarization but does make an impact on the SDP result.

We directly map the source code tokens to the leaf nodes
based on positional information to address this issue. First,
preprocessing steps such as comments and document removal,
as well as rare symbol replacement, are applied to the source
code. Then, the position 𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡 = (𝑠𝑠𝑖𝑖 , 𝑒𝑒𝑖𝑖), which indicates that
the i-th token ti is composed of characters from the si-th to the
(𝑒𝑒𝑖𝑖 − 1)-th position in the original text, is obtained for each
token by traversing the source code and token sequence. For
each leaf node, the positional transformation is applied to
convert its position into posiast = (si, ei) through the
following formula:

 𝑠𝑠𝑖𝑖 = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−1
𝑗𝑗 + 𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2)

 𝑒𝑒𝑖𝑖 = 𝑠𝑠𝑖𝑖 + �𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� (3)

Matrix Al−s ∈ Rm×n represents the mapping relationship
between leaf-nodes and tokens. Each element 𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙−𝑡𝑡 in the
matrix is defined as follows:

 𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙−𝑡𝑡 = �1, if 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡 ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎

0, else
 (4)

Augmented-CPG generation:
In previous work ACGDP[4], we proposed Augmented-

CPG, a code graph that fused Abstract Syntax Tree (AST)
with additional relationships such as data dependencies,
control dependencies, and function calls. An Augmented-
CPG generator based on ANTLR has been developed.
However, due to the limitations of the ANTLR tool, this
generator is designed explicitly for only compilable Java
language code.

Figure 2 Augmented-CPG generation ______

1 https://github.com/tree-sitter/tree-sitter

75

After conducting research, we opted to utilize the tree-
sitter1 tool as the AST extraction tool, allowing us to redevelop
an updated Augmented-CPG generator that can be applied to
multiple programming languages, including Java, Python, C,
C++, C#, Ruby, and more. Moreover, it does not require the
code to be compilable. The extraction process of Augmented-
CPG is shown in Figure 2.

Augmented − CPG = (V, E) is a multi-DiGraph
consisting of AST nodes V = Vast and edges E =
{East, Edfg, Ecfg, Ecall}of various views.
HDCG construction:

Since Augmented-CPG is constructed based on the AST,
which includes nodes of different abstraction levels, we first
collapse the Augmented-CPG by removing non-leaf nodes
and the AST edges East in order to generate input consisting
only of code tokens. During the collapsing process, other
kinds of edges are connected to all the child nodes of the
collapsed node through the outgoing AST edges. For example,
in Figure 3, edge e1,2

dfg is a dataflow edge from AST node v1ast
to v2ast. After collapsing, this edge is transformed into three
data flow edges connecting the leaf nodes. Leaf-edges Eleaf
between tokens from the same leaf-node are appended.

Figure 3 Augmented-CPG to HDCG

Then, as shown in Figure 3, all the leaf nodes are replaced
with token nodes according to the leaf-token map,
constructing an HDCG that consists only of discrete token
nodes and edges.

Indicate edges Eleaf, Edfg, Ecfg, Ecall of Augmented-CPG
as adjacency matrices 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , Mdfg, Mcfg, Mcall . The
relationship of AST nodes and AST leaf nodes can be
represented as a matrix Aast−l . The adjacency matrices of
HDCG edges can be computed as follows:

⎩
⎪
⎨

⎪
⎧ Mh

leaf = Mleaf

Mh
dfg = Mdfg × Aast−l × Al−t

Mh
cfg = Mcfg × Aast−l × Al−t

Mh
call = Mcall × Aast−l × Al−t

 (5)

3.3. Graph-guided Attention Transformer Encoder
The Graph-guided Attention Transformer Encoder

(GATE) is an improved sequence-to-sequence encoder based
on the Transformer encoder. It is designed to adapt to the input
of HDCG and learn the structural information of the code.
Compared to recent Transformer-based approaches that
attempt to learn code structures, GATE does not introduce
additional sequences in the input, ensuring its ability to handle
longer code.

The HDCG generated from a given code S is represented
using the token sequence𝑇𝑇 = [𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛] and the adjacency
matrices 𝑀𝑀ℎ

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛,𝑀𝑀ℎ
𝑑𝑑𝑑𝑑𝑑𝑑 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛,𝑀𝑀ℎ

𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 , and
𝑀𝑀ℎ

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛. Here,ti represents the i-th token in the code S.

Input embedding:
In terms of input embedding, we follow an approach

similar to widely adopted transformer-based code learning
models like CodeBERT and CodeT5. First, we convert the
token sequence T into a numerical sequence X by looking up
the vocabulary. Then, we trim or pad the sequence to a
specified parameter l to ensure its length. Finally, the
sequence is embedded into a high-dimensional space ℝ𝑑𝑑
using an embedding layer.

Sequence 𝑋𝑋 is trimmed or padded:

 X̀ = �
[< C >, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑙𝑙−2, < S >], |X | > l − 2
[< C >, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥|𝑋𝑋|, < S > ,0, … ,0], else (6)

Additionally, the adjacency matrix 𝑀𝑀ℎ
`

 is trimmed if
 |𝑋𝑋 | > 𝑙𝑙 − 2 :

 𝑀𝑀ℎ
`

=

⎣
⎢
⎢
⎢
⎡
0 0 … 0 0
0 𝑚𝑚0,0 … 𝑚𝑚0,𝑙𝑙−2 0
⋮ ⋮ ⋱ ⋮ ⋮
0 𝑚𝑚𝑙𝑙−2,0 … 𝑚𝑚𝑙𝑙−2,𝑙𝑙−2 0
0 0 … 0 0⎦

⎥
⎥
⎥
⎤
 (7)

If |𝑋𝑋 | ≤ 𝑙𝑙 − 2, the adjacency matrix 𝑀𝑀ℎ
`

 is padded:

 𝑀𝑀ℎ
`

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 … 0 0 … 0
0 𝑚𝑚0,0 … 𝑚𝑚|𝑋𝑋| 0 … 0
⋮ ⋮ ⋱ ⋮ ⋮
0 𝑚𝑚|𝑋𝑋|,0 … 𝑚𝑚|𝑋𝑋|,|𝑋𝑋| 0 … 0
0 0 … 0 0 … 0

⋮
0 0 … 0 0 … 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (8)

Graph guided Attention
Traditional Transformer encoders typically use positional

embeddings to capture the sequential order of tokens for
attention computation. However, in HDCG, tokens have more
complex structural relationships. To address this, we propose
utilizing HDCG for structure-aware self-attention
computation, resulting in graph-guide attention (GA):

76

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ Aorigin(X) = A�X̀, 1� = softmax �QKT

√dk
�X

Aleaf�X̀� = A �X̀, Mh
leaf̀ � = softmax �QKT

√dk
Mh

leaf̀ � X̀

Adfg�X̀� = A �X̀, Mh
dfg̀ � = softmax �QKT

√dk
Mh

dfg̀ � X̀

Acfg�X̀� = A �X̀, Mh
cfg̀ � = softmax �QKT

√dk
Mh

cfg̀ � X̀

Acall�X̀� = A �X̀, Mh
call̀ � = softmax �QKT

√dk
Mh

call̀ � X̀

 (9)

Unlike methods like GraphCodeBERT and StructCoder
that attempt to incorporate data flow by modifying the input
sequence, GATE does not alter the input sequence. Instead, it
appropriately integrates structural information by changing
the attention calculation. Importantly, since this approach
does not modify the input sequence, it allows for the addition
of structural information from various perspectives without
being limited by the sequence length by parallelizing multiple
self-attention modules.
Graph guided Encoder

Through the graph-guide attention module, attention
scores from different perspectives can be calculated. There are
two methods for combining multi-perspective attention:
summation and concatenation. In the concatenation method,
the hidden representation is obtained by concatenating the
outputs of each attention module:

 H = Concat�Aorigin, Adfg, Acfg, Acall� (10)

In the summation method, the hidden representation is
obtained by element-wise summation of the outputs of each
attention module:

 H = Sum�Aorigin, Adfg, Acfg, Acall� (11)

 The summation method keeps the exact representation
dimensions with different numbers of input perspectives.

We used the weighted summation for computing the
hidden representation:

 𝐻𝐻 = 𝑊𝑊1 ⋅ 𝐴𝐴𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑊𝑊1 ⋅ 𝐴𝐴𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑊𝑊2 ⋅ 𝐴𝐴𝑑𝑑𝑓𝑓𝑓𝑓
+𝑊𝑊3 ⋅ 𝐴𝐴𝑐𝑐𝑓𝑓𝑓𝑓 + 𝑊𝑊4 ⋅ 𝐴𝐴𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎

 (12)

Wi is a learnable weight matrix that can adaptively adjust
the importance of various structural information.

The expression of GATE for the trimmed or padded input
X̀ and Mh̀ = �1, Mh

leaf, Mh
dfg̀ , Mh

cfg̀ , Mh
call̀ �can be represented as

follows:

 GATE�X̀, Mh̀ � = ∑Wi ⋅ A�X̀, Mh̀ [i]� (12)

Classifier
We utilized a two-layer fully connected neural network

followed by a softmax function as the defect classifier. To
mitigate overfitting, we also incorporated dropout
regularization.

3.4. Fine-Grained Defect Localization
Indeed, existing software defect datasets often provide

defect labels at the file or function level due to various
challenges, such as data collection difficulty and model
complexity, which lead to the same prediction model
granularity. However, not all code segments within a file or
function labeled as defective are necessarily faulty. Therefore,
even after defect prediction, code reviewers still need to invest
considerable effort in reviewing the entire suspected module,
although most of the code segments within the predicted
defective module may not pose a high risk.

In some previous work[2], [4], [9], [11], [21], researchers
attempted to refine samples by combining code-slicing
methods to achieve more fine-grained results. However, these
methods tend to focus on specific types of vulnerabilities, and
excessively fine-grained code slicing can significantly
degrade prediction performance. Recently, some
researchers[15], [16] proposed the hypothesis that "tokens
contributing the most to predictions are likely to be
vulnerable" and conducted validation studies. Building upon
this hypothesis, we calculate statement defect risk scores by
leveraging the self-attention values from each graph-guided
encoder.

Figure 4. Graph guided self-attention

77

Figure 5 GATE-based Fine-Grained Defect Localization

As shown in Figure 5, in the final layer of the model, the
attention matrix 𝑀𝑀𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 of each GATE module is row-
summed to obtain the attention scores for each token:

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑡𝑡 = 𝑀𝑀𝐴𝐴 × [1,1, … ,1]𝑇𝑇 = �𝑠𝑠1𝑡𝑡 , 𝑠𝑠2𝑡𝑡 , … , 𝑠𝑠|𝑇𝑇|
𝑡𝑡 � (13)

 In which, 𝑠𝑠𝑖𝑖𝑡𝑡 represents the score of token 𝑡𝑡𝑖𝑖 in that
GATE module. Then, the scores of all tokens belonging to the
same leaf are summed to obtain the score of the leaves:

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑙𝑙 = (𝐴𝐴𝑙𝑙−𝑡𝑡 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑡𝑡)𝑇𝑇 = �𝑠𝑠1𝑙𝑙 , 𝑠𝑠2𝑙𝑙 , … , 𝑠𝑠|𝐿𝐿|
𝑙𝑙 � (14)

Similarly, the scores of all leaves belonging to the same
statement are summed to obtain the score of the statement:

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑠𝑠 = (𝐴𝐴𝑠𝑠−𝑙𝑙 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑙𝑙)𝑇𝑇 = �𝑠𝑠1𝑠𝑠 , 𝑠𝑠2𝑠𝑠, … , 𝑠𝑠|𝑆𝑆|
𝑠𝑠 � (15)

Finally, the scores of statements calculated by each GATE
module are weighted summed element-wise to obtain the final
score for each statement:

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∑𝑤𝑤𝑗𝑗𝑠𝑠 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑗𝑗𝑠𝑠 ∈ 𝑅𝑅𝟙𝟙×|𝑆𝑆|

This score serves as the defect risk score for the statement,
where a higher score indicates a higher likelihood of a defect.

3.5. Training and prediction
HDCGs are generated for each sample of the function

level software defects dataset using the method described in
Section III.A. The FINDGATE model is trained and
hyperparameter tuned for function-level SDP tasks using the

training set and validation set. The function-level and
statement-level SDP performance of the trained model is
evaluated on the test set. This approach significantly reduces
the difficulty of obtaining training data because it does not
require data with statement-level defect labels during training
and tuning.

4. EXPERIMENT

4.1. Research Questions
To validate our proposed FINDGATE, we presented and

conducted the following research questions (RQs). We
addressed the research problems and validated our proposed
strategy by analyzing the experimental observations.
RQ1: How accurate is our FINDGATE for function-level

defect predictions?
RQ2: How accurate is our FINDGATE for line-level defect

localization?
RQ3: What is the cost-effectiveness of our FINDGATE for

line-level defect localization?
RQ1 and RQ2 aim to validate the performance of the

proposed method on coarse-grained and fine-grained tasks.
RQ3 focuses explicitly on the cost-effectiveness validation of
the proposed method. RQ2 and RQ3 also conducted
experiments using the graph-only module to conduct ablation
studies, intending to verify the contribution of the graph
structure to task performance.

4.2. Datasets
In recent studies[6], [8], [13], [15], [16], [22], datasets

such as Devign[6], Big-Vul[23], and LineDP-dataset[8] are
commonly used for performance evaluation of these methods.
To ensure experimental reproducibility and facilitate
benchmark comparisons, we conducted an investigation on
these datasets. Devign and Big-Vul are datasets that include
real-world open-source C/C++ projects, while the LineDP
dataset consists of Java projects. Due to the data collection
process, Devign is a balanced dataset, whereas Big-Vul and
LineDP-dataset reflect the imbalanced distribution of real-
world code. Big-Vul has function-level granularity with
approximately three times the sample size of the LineDP-
dataset.

We used the Big-Vul dataset, which was split into an
8:1:1 ratio by LineVul[15]. HDCGs for 188,636 functions in
the dataset were generated using the Augmented-CPG
generator, and no cases of generation failure were observed (7%
of samples encountered parsing failures in DeepDFA[22]).

4.3. Experiment Design
For RQ1, to verify the performance of the proposed

FINDGATE on the function-level defect prediction task, it is
compared with the following methods: Transformer-based
methods, GNN-based methods, sequence-based methods
(RNN, BiLSTM), and traditional machine learning (ML)
based methods.

78

Table 1 compares methods for RQ1
Type Method Year

Transformer-based LineVul[15] 2022
GNN+Transformer DeepDFA+LineVul[22] 2022

GNN-based

DeepDFA[22] 2022
DeepVD[24] 2022

Devign[6] 2019
IVDetect[12] 2021

Reveal[5] 2020

BiLSTM-based SySeVR[2] 2018
VulDeePecker[3] 2020

RNN-based DeepLineDP[16] 2022
Russell et al.[25] 2018

ML-based LineDP[8] 2020
Following the conventions in defect prediction research,

we evaluated the performance of our method using precision,
recall, and F1 score.

For the baselines in RQ2 and RQ3, as shown in Table 2,
we selected representative methods for line-level defect
(vulnerability) localization: LineVul[15], DeepLineDP[16],
and JITLine[14]. These methods are based on Transformer
self-attention, RNN-attention, and LIME (Local Interpretable
Model-Agnostic Explanations). Additionally, to conduct
ablation experiments and investigate the effect of GATE, we
trained a model that uses only graph-guided attention without
the original attention (graph-only).

Table 2 compares methods for RQ2&3
Method Localization way Year
LineVul Self-attention 2022

DeepLineDP Attention 2022
JITLine LIME 2021

Graph-Only(ablation) Self-attention \
In accordance with the experiments of the baseline

methods, for RQ2, we used the following metrics to evaluate
the accuracy of line-level localization:
1. Top-10 Accuracy: The probability that at least one real

defective line is among the top ten lines ranked by risk in
the defect samples.

2. IFA (Initial False Alarm): The average number of lines
that are needed to find the first defective line when
inspecting according to risk rank.

3. Total Effort: The average number of lines that need to be
inspected to discover all the defective lines.
For RQ3, we used the following metrics to evaluate the

cost-effectiveness:
1. Effort@20%Recall: The ratio of the number of lines

inspected to discover 20% of the defective lines. It
measures the efficiency of defect discovery.

2. Recall@1%loc: The percentage of defective lines that
can be discovered by inspecting only the top 1% of the
lines ranked by risk. It indicates the effectiveness of the
ranking strategy in identifying defects.

5. RESULTS AND ANALYSIS
The experimental results and analysis are presented in

this section.

5.1. RQ1: How accurate is our FINDGATE for function-
level defect predictions?
The experimental results for RQ1 are presented in Table

3, where the best performance is highlighted in bold. It can be
observed from Table 3 that FINDGATE achieved the best
performance in terms of precision, recall, and F1 score,
surpassing LineVul, which also uses Transformer as the
backbone model, by 1%, 5%, and 3%, respectively.

Table 3 RQ1 results
Type Method Precision Recall F1

Transformer-
based

*FINDGATE 0.98 0.91 0.95
LineVul[15] 0.97 0.86 0.92

GNN+
Transformer

DeepDFA+
LineVul[22] 0.98 0.90 0.94

GNN-
based

DeepDFA[22] 0.54 0.90 0.67
DeepVD[24] 0.70 0.78 0.74

Devign[6] 0.26 0.18 0.21
IVDetect[12] 0.23 0.72 0.35

Reveal[5] 0.19 0.74 0.30
RNN-
based

DeepLineDP[16] 0.42 0.83 0.56
Russell et al.[25] 0.24 0.16 0.19

BiLSTM-
based

SySeVR[2] 0.15 0.74 0.25
VulDeePecker[3] 0.12 0.49 0.19

ML-based LineDP[8] 0.48 0.17 0.25
The closest performing method is DeepDFA+LineVul

proposed by Steenhoek et al., which utilized GNN to learn
structure and CodeBERT to learn semantics, achieving similar
precision and slightly lower recall. Steenhoek et al. and we
employed different approaches in incorporating code graph
structure knowledge into the Transformer-based method, both
resulting in improved performance, highlighting the positive
contribution of graph structure knowledge to SDP tasks.

Table 4 Average performance of different model types
Type Precision(+/-) Recall(+/-) F1(+/-)

*FINDGATE 0.98 0.91 0.95
Transformer+Graph 0.98 0.91 0.94
Transformer-based 0.97↑0.01 0.86↑0.05 0.92↑0.03

GNN-based 0.54↑0.60 0.90↑0.25 0.67↑0.49
Sequence-based 0.42↑0.75 0.83↑0.36 0.56↑0.65

ML-based 0.48↑0.50 0.17↑0.74 0.25↑0.69
Table 4 provides the average performance of different

model types. Overall, the combination of graph knowledge
and Transformer (FINDGATE and DeepDFA+LineVul)
achieved the best performance, closely followed by the
Transformer-only method (LineVul). The GNN-based
methods, which leverage code graph knowledge,
outperformed the sequence-based methods. Traditional ML
methods showed relatively poor performance on our dataset.

79

Figure 6 SDP performance of different types of models

5.2. RQ2: How accurate is our FINDGATE for line-level
defect localization?
Table 5 illustrates the performance of different methods

on line-level defect localization, with the best score
highlighted in bold for each metric. The differences between
FINDGATE and other methods are provided in the upper right
corner. It can be observed that FINDGATE achieved the best
scores in top-10 accuracy, IFA, and total effort, which
validated our proposed approach.

Table 5 Performance on line-level defect localization
Method Top-10 Accuracy IFA Total

Effort
*FINDGATE 0.8 5.48 0.49

LineVul 0.65↑0.15 5.77↓0.29 0.52↓0.03
DeepLineDP 0.59↑0.21 10.71↓5.23 0.56↓0.07

JITLine 0.10↑0.70 24.20↓18.72 0.54↓0.27
Graph-Only 0.48↑0.32 6.00↓0.52 0.55↓0.06

In terms of top-10 accuracy, FINDGATE achieves a score
of 0.80, while other baseline methods range from 0.10 to 0.65.
FINDGATE's accuracy is 19%-88% higher than that of the
other baseline methods. For IFA, FINDGATE achieves a score
of 5.48, while other baseline methods range from 5.77 to 10.8.
FINDGATE requires checking an average of 5%-77% fewer
lines to discover the first defective line compared to other
baseline methods. Regarding total_effort, FINDGATE
achieves a score of 0.49, while other baseline methods range
from 0.52 to 0.56. FINDGATE requires 6%-36% less effort
compared to other baseline methods.

LineVul, which also uses Transformer as the backbone
model, achieved slightly lower performance, indicating that
utilizing the built-in self-attention mechanism in Transformer
for line-level defect localization is superior to the other two
methods.

Figure 7 Line-level defect localization performance

In addition, we also attempted to perform line-level
defect localization using only graph-guided self-attention. The
results showed that it achieved accuracy only higher than
JITLine, and achieved better IFA compared to both JITLine
and DeepLineDP. It might be safe to conclude that semantic
knowledge contributes the most to line-level defect
localization, followed by graph structure knowledge.

5.3. RQ3: What is the cost-effectiveness of our FINDGATE
for line-level defect localization?
Table 6 presents the cost-effectiveness of each method in

line-level defect localization, with the best score highlighted
in bold for each metric. The differences between each method
and FINDGATE are shown in the upper right corner. It can be
observed that FINDGATE achieves the best results in both
Effort@20%Recall and Recall@1%LOC.

Table 6 Cost-effectiveness on line-level defect localization
Method Effort@20%Recall Recall@1%LOC

*FINDGATE 0.0088 0.22
LineVul 0.0107↓0.002 0.19↑0.03

DeepLineDP 0.0208↓0.012 0.03↑0.19
JITLine 0.0150↓0.006 0.09↑0.13

Graph-Only 0.0148↓0.006 0.13↑0.09
In terms of Effort@20%Recall, FINDGATE achieves a

score of 0.0088, while other baseline methods range from
0.0107 to 0.0208. FINDGATE requires 18%-58% less effort
than other baseline methods, meaning FINDGATE needs less
effort to identify the same number of defective lines.

In terms of Recall@1%LOC, FINDGATE achieves a
score of 0.22, while other baseline methods range from 0.02
to 0.19. FINDGATE discovers 16%-87% more defective lines
compared to other baseline methods, which means that
FINDGATE can identify more defective lines with the same
effort.

80

Figure 8 Cost-effectiveness of line-level defect localization

6. THREATS TO VALIDITY

6.1. Construct Validity
The threat to structural validity is related to the dataset

selection. We used a version of the Big-Vul dataset[23] split
by Fu et al.[15] We did not use some commonly used public
defect prediction datasets[26] because they only provide file-
level or function-level labels, which are not suitable for line-
level research. Pornprasit’s dataset[16] has line-level labels,
but the samples are at the file granularity rather than the
function granularity, and the dataset size is relatively small.
To ensure a fair comparison, we selected the same dataset,
Big-Vul, as LineVul[15], IVDetect[12], and DeepDFA[22] et
al.

Additionally, JITLine[14] was not included in the
comparison in RQ1 because its prediction task focuses on
code changes under just-in-time scenarios, which makes it
difficult to compare directly. As a substitute, we compared our
approach with Line-DP[8] in RQ1, which also utilizes
BOW+RF.

6.2. External Validity
The external validity threats are related to the

generalizability of our FINEGATE method. We conducted
experiments on the large-scale line-level defect dataset, Big-
Vul, to ensure a fair comparison with other methods. However,
in future work, exploring other line-level defect datasets
would be valuable to further validate our approach's
effectiveness.

6.3. Internal validity
The internal validity threats are related to the

hyperparameter settings during the fine-tuning of the
FINEGATE model. For the backbone model, we used the
default hyperparameter settings of the encoder in codeT5 to
avoid the computational cost of hyperparameter tuning for a
transformer model with millions of parameters, which is
beyond our resource constraints. Additionally, due to time and

resource limitations, the FINDGATE model used in this study
was only trained for 10 epochs. Increasing the number of
training epochs may improve the performance of the model.

In our experiments, we directly used the LineVul model
trained by Fu et al[15]. We also used open-source
reimplementation packages to experiment with models like
DeepLineDP2, DeepVD3 and DeepDFA4. For models such as
IVDetect that were not reproducible (which is also a concern
in other studies), we reused the results reported in Fu and
Steenhoek's papers[12], [15], [22], ensuring strict consistency
in the data partitioning method.

To mitigate these threats, we will provide detailed
experimental data publicly, and we expect to complete the
organization and release of our replication package within half
a year after the publication of our paper, which will enhance
the transparency of our work.

7. CONCLUSION
In the field of defect prediction and vulnerability

detection, fine-grained localization at the line level has gained
significant attention. In this paper, we propose FINDGATE, a
method for defect prediction and fine-grained localization that
leverages transformer-based models to learn code structure
and semantic knowledge simultaneously. Using the
innovative GATE (Graph-guided Attention Transformer
Encoder) to learn HDCG, we address the limitations of other
methods that attempt to learn graph knowledge, such as loss
of structural information, input sequence redundancy, and
over-complexity.

By conducting empirical evaluations on large-scale real-
world datasets and comparing FINDGATE with state-of-the-
art methods such as LineVul and DeepDFA, we demonstrate
that FINDGATE achieves the following:
1) In function-level prediction tasks, FINDGATE performs

slightly better than the state-of-the-art method
DeepDFA+LineVul (which used a more complicated
model) and shows 3%-392% F1 score improvements
compared to other baseline methods.

2) In line-level localization tasks, FINDGATE achieves a
19%-88% improvement in top-10 accuracy and reduces
effort by 18%-58% in terms of cost-effectiveness.

3) Through the ablation experiments of a graph-only model
in RQ2&RQ3, we further validate the positive
contribution of graph structure knowledge to model
performance.

Therefore, by integrating code graph structure knowledge
with semantic knowledge, the FINDGATE model can assist
software testing analysts in defect prediction and localization
more accurately and efficiently.

ACKNOWLEDGMENT
This work was supported by Research on FPGA Software

Code Rule Set and Code Defect Pattern Library
(JWVY227200010) and the Key-Area Research and
Development Program of Guangdong Province (No.
2020B0909030005).

2 https://github.com/awsm-research/DeepLineDP

3 https://github.com/deepvd2022/deepvd2022

4 https://github.com/whitemech/DeepDFA

81

REFERENCES
[1] H. Hata, T. Kikuno, and O. Mizuno, “A systematic review of

software fault prediction studies and related techniques,”
Comput. Softw., vol. 29, no. 1, pp. 106–117, 2012, doi:
10.11309/jssst.29.1_106.

[2] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A
Framework for Using Deep Learning to Detect Software
Vulnerabilities,” pp. 1–13, 2018, [Online]. Available:
http://arxiv.org/abs/1807.06756

[3] Z. Li et al., “VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection,” arXiv, no. February, 2018, doi:
10.14722/ndss.2018.23158.

[4] J. Xu, J. Ai, J. Liu, and T. Shi, “ACGDP: An Augmented Code
Graph-Based System for Software Defect Prediction,” IEEE
Trans. Reliab., vol. 71, no. 2, pp. 850–864, 2022, doi:
10.1109/TR.2022.3161581.

[5] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep
Learning based Vulnerability Detection: Are We There Yet?,”
Ieee Trans. Softw. Eng., vol. TBD, p. 1, 2020, [Online].
Available: https://git.io/Jf6IA.

[6] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program
semantics via graph neural networks,” Adv. Neural Inf. Process.
Syst., vol. 32, pp. 1–11, 2019.

[7] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari,
“Learning to map source code to software vulnerability using
code-as-a-graph,” Icst, pp. 1–8, 2019.

[8] S. Wattanakriengkrai, P. Thongtanunam, C. Tantithamthavorn,
H. Hata, and K. Matsumoto, “Predicting Defective Lines Using a
Model-Agnostic Technique,” IEEE Trans. Softw. Eng., no. 1, pp.
1–23, 2020, doi: 10.1109/TSE.2020.3023177.

[9] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin,
“VulDeeLocator: A Deep Learning-based Fine-grained
Vulnerability Detector,” IEEE Trans. Dependable Secur.
Comput., no. ii, pp. 1–15, 2021, doi:
10.1109/TDSC.2021.3076142.

[10] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske,
“VUDENC: Vulnerability Detection with Deep Learning on a
Natural Codebase for Python,” Inf. Softw. Technol., vol. 144,
Apr. 2022, doi: 10.1016/j.infsof.2021.106809.

[11] T. H. M. Le and M. A. Babar, On the Use of Fine-grained
Vulnerable Code Statements for Software Vulnerability
Assessment Models, vol. 1, no. 1. Association for Computing
Machinery, 2022. [Online]. Available:
http://arxiv.org/abs/2203.08417

[12] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with
fine-grained interpretations,” ESEC/FSE 2021 - Proc. 29th ACM
Jt. Meet. Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., pp.
292–303, 2021, doi: 10.1145/3468264.3468597.

[13] D. Hin, A. Kan, H. Chen, and M. A. Babar, “LineVD: Statement-
level Vulnerability Detection using Graph Neural Networks,”
MSR ’22 Proc. 19th Int. Conf. Min. Softw. Repos. May 23-24,
2022, Pittsburgh, PA, USA, vol. 1, no. 1, 2022, [Online].
Available: http://arxiv.org/abs/2203.05181

[14] C. Pornprasit and C. K. Tantithamthavorn, “JITLine: A simpler,
better, faster, finer-grained just-in-time defect prediction,” Proc. -
2021 IEEE/ACM 18th Int. Conf. Min. Softw. Repos. MSR 2021,
pp. 369–379, 2021, doi: 10.1109/MSR52588.2021.00049.

[15] M. Fu and C. Tantithamthavorn, “LineVul: A Transformer-based
Line-Level Vulnerability Prediction,” in 19th International
Conference on Mining Software Repositories (MSR ’22), May
23â•fi24, 2022, Pittsburgh, PA, USA, 2022, vol. 1, no. 1. doi:
10.1145/3524842.3528452.

[16] C. Pornprasit and C. Tantithamthavorn, “DeepLineDP: Towards
a Deep Learning Approach for Line-Level Defect Prediction,”
IEEE Trans. Softw. Eng., 2022, doi: 10.1109/TSE.2022.3144348.

[17] T. Zhang, Q. Du, J. Xu, J. Li, and X. Li, “Software defect
prediction and localization with attention-based models and
ensemble learning,” Proc. - Asia-Pacific Softw. Eng. Conf.
APSEC, vol. 2020–Decem, pp. 81–90, 2020, doi:
10.1109/APSEC51365.2020.00016.

[18] Z. Feng et al., “CodeBERT: A pre-trained model for
programming and natural languages,” Find. Assoc. Comput.
Linguist. Find. ACL EMNLP 2020, pp. 1536–1547, 2020, doi:
10.18653/v1/2020.findings-emnlp.139.

[19] D. Guo et al., “GraphCodeBERT: Pre-training Code
Representations with Data Flow,” pp. 1–18, 2020, [Online].
Available: http://arxiv.org/abs/2009.08366

[20] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M.
Brockschmidt, “CodeSearchNet Challenge: Evaluating the State
of Semantic Code Search,” 2019, [Online]. Available:
http://arxiv.org/abs/1909.09436

[21] W. Zheng, Y. Jiang, and X. Su, “VulSPG: Vulnerability detection
based on slice property graph representation learning,” Proc. -
Int. Symp. Softw. Reliab. Eng. ISSRE, vol. 2021–Octob, pp. 457–
467, 2021, doi: 10.1109/ISSRE52982.2021.00054.

[22] B. Steenhoek, W. Le, and H. Gao, “DeepDFA: Dataflow
Analysis-Guided Efficient Graph Learning for Vulnerability
Detection,” pp. 1–15, 2022, [Online]. Available:
http://arxiv.org/abs/2212.08108

[23] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries,”
Proc. - 2020 IEEE/ACM 17th Int. Conf. Min. Softw. Repos. MSR
2020, pp. 508–512, 2020, doi: 10.1145/3379597.3387501.

[24] W. Wang, “DeepVD: Toward Class-Separation Features for
Neural Network Vulnerability Detection.”
https://github.com/deepvd2022/deepvd2022

[25] R. Russell et al., “Automated Vulnerability Detection in Source
Code Using Deep Representation Learning,” Proc. - 17th IEEE
Int. Conf. Mach. Learn. Appl. ICMLA 2018, no. Ml, pp. 757–762,
2019, doi: 10.1109/ICMLA.2018.00120.

[26] S. Yatish, J. Jiarpakdee, P. Thongtanunam, and C.
Tantithamthavorn, “Mining Software Defects: Should We
Consider Affected Releases?,” Proc. - Int. Conf. Softw. Eng., vol.
2019–May, pp. 654–665, 2019, doi: 10.1109/ICSE.2019.00075.

82

