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Abstract—Recognizing defects in source code through deep 
learning methods has become an important research subject 
for improving software quality. Although Transformer-based 
models such as CodeBERT have demonstrated impressive 
performance improvement in defect prediction tasks, models 
relying on single-structured input data, such as sequences, 
have limited ability to capture the code's structural features. 
Treating code simply as text overlooks essential information 
such as control dependencies, data dependencies, and 
syntactic structures inherent in the code. This paper proposes 
the Heterogeneous Discrete Code Graph (HDCG), which 
assigns structural information to code tokens from multiple 
perspectives. We also introduce an improved transformer 
model FINEGATE that leverages HDCG to guide self-
attention. The experiments demonstrate that FINEGATE can 
effectively predict source code defects and perform fine-
grained defect localization. 

Keywords- Software defect prediction; Code graph; Fine-
grained; Transformer; Code structure 

1. INTRODUCTION 
 With the rapid growth in software scale and complexity 
and the acceleration of software iteration, the difficulty of 
identifying and locating software defects through testing has 
increased significantly, leading to exponential growth in time 
and resource costs. In China, billions of dollars are spent 
annually to support software testing. Software defect 
prediction (SDP) has emerged as one of the fastest-growing 
and most widely recognized technologies in the field of 
software reliability in the past decade. Currently, machine 
learning, deep learning, and other artificial intelligence 
techniques have been extensively applied by researchers in 
software defect prediction. By learning from historical defect 
knowledge, preliminary analysis and diagnosis of software 
defect situations have been conducted, providing guidance for 
software testing, reducing costs, and improving cost-
effectiveness. 

1.1. Motivation 
Early software defect prediction methods primarily 

involved manually defining and extracting defect features 
from software. These features were then used to train machine 

learning models, which were subsequently utilized for 
predicting defects in new versions of software. In recent years, 
transformer-based sequential deep learning models, which 
have been rapidly developed, have demonstrated impressive 
performance across various domains. In the field of software, 
a series of Transformer-based methods, led by CodeBERT as 
a representative, have emerged. Instead of manual feature 
engineering, these methods treat software code as textual data 
for learning and representation, resulting in improved 
performance in software defect prediction tasks. 

Represented by CodeBERT, these methods typically 
discretize software code into token sequences, which are then 
input into a Transformer model with an embedding layer and 
self-attention modules. The fundamental idea behind these 
methods is to treat software code as a textual document, 
extract feature representations using a Transformer model, 
and then classify them with a multilayer perceptron. These 
end-to-end approaches effectively utilize a pretrained model 
to learn semantic information from code, eliminating the 
requirement of manual feature engineering, which shows 
improved performance in SDP tasks. However, unlike 
ordinary text, code possesses distinct structural characteristics. 
The sequential order of code lines alone cannot sufficiently 
represent those structures, which is often overlooked in these 
methods. 

This paper proposes the Heterogeneous Discrete Code 
Graph (HDCG) to enhance the structural information of code 
tokens without introducing additional nodes, which addresses 
the abovementioned issues. Structural information is 
introduced through the improved Graph-guided Attention 
Transformer Enhanced (GATE) model. Moreover, to achieve 
fine-grained defect localization, we reference and enhance the 
method proposed by Liu et al., computing risk scores for code 
lines through multidimensional attention. 

1.2. Contribution 
Overall, this paper mainly includes the following 

contributions: 
1. The paper introduces the HDCG to achieve structural 

information enhancement for code tokens, addressing 
structure information absent issues in current 
Transformer-based SDP methods while avoiding 
introducing redundant information to the input sequence. 

72

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

2693-9177/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS60937.2023.00017



2. The GATE model is proposed, which utilizes structural 
information and enhances SDP performance by guiding 
self-attention using HDCG. 

3. FINDGATE, an improved Fine-grained Defect 
Localization method based on the GATE model, is 
proposed. This approach is capable of training the model 
with function-level data and achieves defect localization 
with a finer granularity. 

4. A comprehensive set of experiments was conducted on 
a large-scale dataset to demonstrate the effectiveness of 
the proposed FINDGATE method. The comparative 
experimental results demonstrate that our proposed 
method achieves better or comparable performance to 
the current state-of-the-art methods in defect prediction 
and fine-grained defect localization. The results of the 
ablation experiments show that the multidimensional-
attention-based localization method achieves a 
significant improvement compared to the single-
dimensional-attention-based method. 

1.3. Paper Organization 
 The remainder of the paper is organized as follows: 
Section 2 gives brief reviews of software defect prediction and 
transformer-based methods. Section 3 introduces our 
proposed method FINDGATE. Section 4 provides the 
experimental setting. The results are provided and analyzed in 
Section 5. Section 6 discloses the threats to validity. Section 
VII draws the conclusions. 

2. RELATED WORKS 
 This section mainly discusses the current literature work 
in the field of software defect prediction based on machine 
learning, graph learning-based models, and fine-grained SDP. 
Software defect prediction: 

 Machine learning-based SDP became mainstream in this 
domain after the first decade of the 21st century. According to 
Hata et al.[1], machine learning-based methods accounted for 
66% of the total relevant research papers in 2009. Traditional 
ML-based SDP methods typically involve historical data 
collection and defect labeling, manually designed metric 
extraction, model training with feature data, and prediction. 
Later with the advancement of deep learning techniques, 
which gradually replaced feature engineering, sequence 
models such as RNNs were applied in SDP. 
Graph-based SDP:  

Based on architectures such as RNN, sequence models 
usually consider code as token sequences without taking the 
software structure into account. With the rise of graph-based 
learning, researchers began to focus on the graph 
representation of code. For instance, Li et al. proposed a series 
of methods such as SyseVR[2] and VulDeePecker[3], which 
incorporate code graph attributes such as data flow graphs into 
sequence models through traversal. To address the low 
adaptability of sequence models to graph structures, many 
works have introduced graph representation learning 
algorithms, such as graph convolutional neural networks 
(GCNs), into SDP tasks (e.g., GNN-DP[4], Reveal[5], 
Devign[6] and code2vul[7]). The methods above, which focus 

on defect prediction at the file-level or function-level, have not 
yet provided solutions for fine-grained SDP. 
Transformer-based SDP:  

Mainstream defect prediction methods cover a large area 
in their predictions, making it highly challenging for code 
reviewers to inspect the entire region within a limited time and 
effort. According to statistics[8], less than 3% of the lines of 
code in defective source files were actually defective. In the 
2020s, to guide testing developers and code reviewers to focus 
their attention on smaller high-risk areas, some solutions have 
been proposed from the perspectives of training data and 
prediction results to narrow the scope of predictions. 

Some researchers have approached narrowing the data 
range by using finer-grained samples. Liu et al.[9] slice the 
code to reduce the sample size and introduce intermediate 
code to construct code representations for vulnerability 
detection. Our previous work ACGDP[4] proposed a method 
of graph representation learning by extracting subgraphs 
through static analysis on Augmented-CPGs. Wartschinski et 
al.[10] introduced VUDENC, which utilizes a sliding window 
to capture token sequences as input for LSTM. With the rise 
of transformer-based models, Le et al.[11] combined program 
slicing methods with the CodeBERT model. 

Another group of researchers has focused on further 
explaining the prediction results to achieve fine-grained 
localization from coarse-grained predictions. IVDetect[12] 
uses the FA-GCN method to predict function-level 
vulnerabilities and employs GNNExplainer to pinpoint fine-
grained locations. LineVD[13] utilizes CodeBERT and GAT 
to learn function-level and statement-level representations, 
respectively, and combines the results to achieve statement-
level judgments. JITLINE[14] and LINEDP[8] employ the 
Local Interpretable Model-agnostic Explanations (LIME) 
technique for line-level computation. With the widespread use 
of attention mechanisms, works such as [15], DeeplineDP[16], 
and DPEA[17] utilize attention mechanisms for line-level 
scoring. 

Balancing prediction accuracy and fine-grained 
localization data narrowing is challenging. Therefore, we are 
more optimistic about the approaches that focus on explaining 
the prediction results. In our work, we achieve fine-grained 
localization by interpreting the results of the graph-guided 
model. 

3. METHODOLOGY 
In this section, we introduce our novel fine-grained 

software defect prediction method based on Heterogeneous 
Discrete Code Graph-guided Attention Transformer Enhance 
model (FINDGATE), with three main components: 
Heterogeneous Discrete Code Graph (HDCG), graph-guided-
attention transformer enhance model (GATE) and GATE-
based fine-grained defect localization method (FIND). 

3.1. Framework 
This section introduces the framework of our method, 

which is divided into three stages, as shown in Figure 1: 1. 
Graph construction of HDCG; 2. GATE model-based defect 
prediction; 3. fine-grained defect localization. 
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In the first stage, the source code is parsed into an abstract 
syntax tree (AST) and discretized into tokens. Tokens are 
mapped with AST leaf nodes through position. The 
Augmented-CPG is built as described in our previous work[4]. 
The Augmented-CPG is collapsed, keeping only the leaf 
nodes. Heterogeneous Discrete Code Graph was then yielded 
by expanding AST leaves into token nodes based on leaf-
tokens map. 

In the second stage, we propose an enhanced transformer-
based SDP model by utilizing HDCG to guide self-attention. 
The HDCG captures different types of relationships and 
guides self-attention modules in different encoders to generate 
a comprehensive source code representation. A multilayer 
perceptron (MLP) is employed to classify the generated 
representation and perform the defect prediction task. 

In the third stage, fine-grained defect localization was 
performed by utilizing the self-attention values from each 
graph-guided encoder based on the hypothesis “tokens that are 
most contributed to the predictions are likely to be vulnerable” 
proposed by Fu et al.[15] For each encoder, token-attention 
scores were calculated by heads-sum and layers-sum. 
Statement-attention scores were obtained by progressively 
aggregating the attention scores based on the leaf-token map 
and statement-leaf map. The statement scores from each 
encoder were summed up and ranked to indicate defect risks. 

3.2. Graph construction 
As mentioned earlier, a series of Transformer-based 

models, with CodeBERT[18] as a representative, have 
achieved remarkable performance in the SDP task. However, 
numerous studies have indicated that code structural 
information plays a significant role in code representation and 
SDP tasks. Non-Euclidean structured graphs are a suitable 

form for structural information reinforcement of code token 
sequences. As transformer-based models typically struggle to 
process graph data as input directly, methods such as 
GraphCodeBERT[19] have been attempted. These 
approaches often convert graph data nodes into sequences 
through traversal, inevitably leading to some structural 
information loss. On the other hand, appending the graph node 
sequence to the original token sequence increases the length 
of the input, limiting the length of the code token sequence in 
models of equal capacity. For example, CodeBERT-base can 
accept 512 code tokens in a sample at maximum, while 
GraphCodeBERT-base with the same model size can only 
accept 256 code tokens, half of CodeBERT-base’s capacity, 
which significantly limits the applicability of the model. 

We propose a graph representation called Heterogeneous 
Discrete Code Graph (HDCG), where code tokens serve as 
nodes and various structural relationships are attached. HDCG 
consists solely of code token nodes, and the input sequence 
fed into the model does not contain any redundant nodes, 
effectively addressing the issue of complex output sequences 
in methods such as GraphCodeBERT. The pure input 
sequence composed of code tokens also plays a better role in 
supporting the subsequent fine-grained defect localization 
based on graph-guided attention. The construction of HDCG 
involves the following steps: 1. Code tokenization, 2. Abstract 
Syntax Tree (AST) generation, 3. Leaf-token mapping, 4. 
Augmented-CPG generation, and 5. HDCG construction. 
Code tokenization:  

In the field of language processing, models require a 
vocabulary to represent sentences during both training and 
prediction. The total vocabulary size typically ranges from 
approximately 170 thousand to 1 million words in natural 
language processing (NLP). It is usually several orders of 

 
Figure 1. Overview of proposed approach FINDGATE 
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magnitude higher in program language processing (PLP). In 
this paper, the Byte Pair Encoding (BPE) algorithm, originally 
developed for data compression, is used for code tokenization. 
BPE iteratively identifies the most frequent byte pairs in the 
data and merges them into a new "byte" token. By applying 
BPE tokenization, the size of the vocabulary is adequately 
reduced and “Out of Vocabulary” (OOV) words are 
represented with token combinations. In this paper, we 
employed a BPE tokenizer pretrained on CodeSearchNet[20] 
to generate a tokenizer specifically suitable for programming 
languages. 
AST generation:  

To investigate the structural representation of code, 
researchers have used various code abstraction graphs in SDP, 
with abstract syntax trees (ASTs) being one of the most widely 
used. There are already some tools available for generating 
ASTs for different programming languages. To support 
different programming languages and enable language-
agnostic analysis, we employed the open-source tool tree-
sitter for AST generation and standardized the results into 
language-agnostic directed acyclic graphs (DAGs) Gast =
(Vast, East). 

Node vast = (src, pos, typev) ∈ Vast is represented as a 
triplet, where src  denotes the source code, pos = (s, e) =
�(linestart, colstart), (lineend, colend)� represents the position 
in the source code, and typev  denotes the node type. Edge 
east = �vsource, vtarget, typee� ∈ East  is defined as a triplet 
consisting of the source node vsource, the target node vtarget, 
and the edge typetypee = AST. 

𝐿𝐿 = { 𝑣𝑣𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|𝑣𝑣𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 , 0 < 𝑖𝑖 < 𝑚𝑚 }  represents the 
subset of leaf-nodes (leaves) in the AST, and S = { s𝑖𝑖|0 < i <
n} denotes the set of statements in the source code. The i-th 
statement si = �vjleaf, vj+1leaf, … �  is composed of leaf nodes 
vjleaf, vj+1leaf, … . Matrix As−l ∈ Rm×n  represents the mapping 
relationship between statements and leaf nodes. Each element 
𝑎𝑎𝑖𝑖𝑖𝑖𝑠𝑠−𝑙𝑙 in the matrix is defined as follows: 

 𝑎𝑎𝑖𝑖𝑖𝑖𝑠𝑠−𝑙𝑙 = �1, if 𝑣𝑣𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 𝑠𝑠𝑗𝑗

0, else
  (1) 

Leaf-token mapping:  
To incorporate the graph structure into tokens, it is 

necessary to establish a mapping between the leaves and 
tokens. Some studies have simply concatenated the tokenized 
results of the leaf nodes and tokens, treating them as a single 
token sequence. Some studies have simply linked leaves and 
tokens by tokenizing and concatenating leaf-nodes' source 
code instead of tokenizing the complete code. However, we 
found that this kind of approach results in differences with 
tokens generated directly from the complete source code. That 
might not affect the performance of tasks like code 
summarization but does make an impact on the SDP result. 

We directly map the source code tokens to the leaf nodes 
based on positional information to address this issue. First, 
preprocessing steps such as comments and document removal, 
as well as rare symbol replacement, are applied to the source 
code. Then, the position 𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡 = (𝑠𝑠𝑖𝑖 , 𝑒𝑒𝑖𝑖), which indicates that 
the i-th token ti is composed of characters from the si-th to the 
(𝑒𝑒𝑖𝑖 − 1)-th position in the original text, is obtained for each 
token by traversing the source code and token sequence. For 
each leaf node, the positional transformation is applied to 
convert its position into posiast = (si, ei)  through the 
following formula: 

 𝑠𝑠𝑖𝑖 = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−1
𝑗𝑗 + 𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2) 

 𝑒𝑒𝑖𝑖 = 𝑠𝑠𝑖𝑖 + �𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑐𝑐𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� (3) 

Matrix Al−s ∈ Rm×n  represents the mapping relationship 
between leaf-nodes and tokens. Each element 𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙−𝑡𝑡  in the 
matrix is defined as follows: 

 𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙−𝑡𝑡 = �1, if 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡 ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎

0, else
 (4) 

Augmented-CPG generation:  
In previous work ACGDP[4], we proposed Augmented-

CPG, a code graph that fused Abstract Syntax Tree (AST) 
with additional relationships such as data dependencies, 
control dependencies, and function calls. An Augmented-
CPG generator based on ANTLR has been developed. 
However, due to the limitations of the ANTLR tool, this 
generator is designed explicitly for only compilable Java 
language code.  

 
Figure 2 Augmented-CPG generation ______ 

1 https://github.com/tree-sitter/tree-sitter 
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After conducting research, we opted to utilize the tree-
sitter1 tool as the AST extraction tool, allowing us to redevelop 
an updated Augmented-CPG generator that can be applied to 
multiple programming languages, including Java, Python, C, 
C++, C#, Ruby, and more. Moreover, it does not require the 
code to be compilable. The extraction process of Augmented-
CPG is shown in Figure 2. 

Augmented − CPG = (V, E) is a multi-DiGraph 
consisting of AST nodes V = Vast  and edges E =
{East, Edfg, Ecfg, Ecall}of various views. 
HDCG construction:  

Since Augmented-CPG is constructed based on the AST, 
which includes nodes of different abstraction levels, we first 
collapse the Augmented-CPG by removing non-leaf nodes 
and the AST edges East in order to generate input consisting 
only of code tokens. During the collapsing process, other 
kinds of edges are connected to all the child nodes of the 
collapsed node through the outgoing AST edges. For example, 
in Figure 3, edge e1,2

dfg is a dataflow edge from AST node v1ast 
to v2ast. After collapsing, this edge is transformed into three 
data flow edges connecting the leaf nodes. Leaf-edges Eleaf 
between tokens from the same leaf-node are appended. 

 
Figure 3 Augmented-CPG to HDCG 

Then, as shown in Figure 3, all the leaf nodes are replaced 
with token nodes according to the leaf-token map, 
constructing an HDCG that consists only of discrete token 
nodes and edges. 

Indicate edges Eleaf, Edfg, Ecfg, Ecall of Augmented-CPG 
as adjacency matrices 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , Mdfg, Mcfg, Mcall . The 
relationship of AST nodes and AST leaf nodes can be 
represented as a matrix Aast−l . The adjacency matrices of 
HDCG edges can be computed as follows: 

 

⎩
⎪
⎨

⎪
⎧ Mh

leaf = Mleaf

Mh
dfg = Mdfg × Aast−l × Al−t

Mh
cfg = Mcfg × Aast−l × Al−t

Mh
call = Mcall × Aast−l × Al−t

 (5) 

3.3. Graph-guided Attention Transformer Encoder 
The Graph-guided Attention Transformer Encoder 

(GATE) is an improved sequence-to-sequence encoder based 
on the Transformer encoder. It is designed to adapt to the input 
of HDCG and learn the structural information of the code. 
Compared to recent Transformer-based approaches that 
attempt to learn code structures, GATE does not introduce 
additional sequences in the input, ensuring its ability to handle 
longer code. 

The HDCG generated from a given code S is represented 
using the token sequence𝑇𝑇 = [𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛] and the adjacency 
matrices 𝑀𝑀ℎ

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛,𝑀𝑀ℎ
𝑑𝑑𝑑𝑑𝑑𝑑 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛,𝑀𝑀ℎ

𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 , and 
𝑀𝑀ℎ

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛. Here,ti represents the i-th token in the code S. 
 

Input embedding: 
In terms of input embedding, we follow an approach 

similar to widely adopted transformer-based code learning 
models like CodeBERT and CodeT5. First, we convert the 
token sequence T into a numerical sequence X by looking up 
the vocabulary. Then, we trim or pad the sequence to a 
specified parameter l  to ensure its length. Finally, the 
sequence is embedded into a high-dimensional space ℝ𝑑𝑑 
using an embedding layer. 

Sequence 𝑋𝑋 is trimmed or padded:  

 X̀ = �
[< C >, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑙𝑙−2, < S >], |X | > l − 2 
[< C >, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥|𝑋𝑋|, < S > ,0, … ,0], else  (6) 

Additionally, the adjacency matrix 𝑀𝑀ℎ
`

 is trimmed if 
 |𝑋𝑋 | > 𝑙𝑙 − 2 : 

 𝑀𝑀ℎ
`

=

⎣
⎢
⎢
⎢
⎡
0 0 … 0 0
0 𝑚𝑚0,0 … 𝑚𝑚0,𝑙𝑙−2 0
⋮ ⋮ ⋱ ⋮ ⋮
0 𝑚𝑚𝑙𝑙−2,0 … 𝑚𝑚𝑙𝑙−2,𝑙𝑙−2 0
0 0 … 0 0⎦

⎥
⎥
⎥
⎤
 (7) 

If |𝑋𝑋 | ≤ 𝑙𝑙 − 2, the adjacency matrix 𝑀𝑀ℎ
`

 is padded:  

 𝑀𝑀ℎ
`

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 … 0 0 … 0
0 𝑚𝑚0,0 … 𝑚𝑚|𝑋𝑋| 0 … 0
⋮ ⋮ ⋱ ⋮ ⋮
0 𝑚𝑚|𝑋𝑋|,0 … 𝑚𝑚|𝑋𝑋|,|𝑋𝑋| 0 … 0
0 0 … 0 0 … 0

⋮
0 0 … 0 0 … 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (8) 

Graph guided Attention 
Traditional Transformer encoders typically use positional 

embeddings to capture the sequential order of tokens for 
attention computation. However, in HDCG, tokens have more 
complex structural relationships. To address this, we propose 
utilizing HDCG for structure-aware self-attention 
computation, resulting in graph-guide attention (GA): 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ Aorigin(X) = A�X̀, 1� = softmax �QKT

√dk
�X

Aleaf�X̀� = A �X̀, Mh
leaf̀ � = softmax �QKT

√dk
Mh

leaf̀ � X̀

Adfg�X̀� = A �X̀, Mh
dfg̀ � = softmax �QKT

√dk
Mh

dfg̀ � X̀

Acfg�X̀� = A �X̀, Mh
cfg̀ � = softmax �QKT

√dk
Mh

cfg̀ � X̀

Acall�X̀� = A �X̀, Mh
call̀ � = softmax �QKT

√dk
Mh

call̀ � X̀

 (9) 

Unlike methods like GraphCodeBERT and StructCoder 
that attempt to incorporate data flow by modifying the input 
sequence, GATE does not alter the input sequence. Instead, it 
appropriately integrates structural information by changing 
the attention calculation. Importantly, since this approach 
does not modify the input sequence, it allows for the addition 
of structural information from various perspectives without 
being limited by the sequence length by parallelizing multiple 
self-attention modules. 
Graph guided Encoder 

Through the graph-guide attention module, attention 
scores from different perspectives can be calculated. There are 
two methods for combining multi-perspective attention: 
summation and concatenation. In the concatenation method, 
the hidden representation is obtained by concatenating the 
outputs of each attention module: 

  H = Concat�Aorigin, Adfg, Acfg, Acall� (10) 

In the summation method, the hidden representation is 
obtained by element-wise summation of the outputs of each 
attention module:  

 H = Sum�Aorigin, Adfg, Acfg, Acall� (11) 

 The summation method keeps the exact representation 
dimensions with different numbers of input perspectives. 

We used the weighted summation for computing the 
hidden representation: 

 𝐻𝐻 = 𝑊𝑊1 ⋅ 𝐴𝐴𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑊𝑊1 ⋅ 𝐴𝐴𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑊𝑊2 ⋅ 𝐴𝐴𝑑𝑑𝑓𝑓𝑓𝑓
+𝑊𝑊3 ⋅ 𝐴𝐴𝑐𝑐𝑓𝑓𝑓𝑓 + 𝑊𝑊4 ⋅ 𝐴𝐴𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎

 (12) 

Wi is a learnable weight matrix that can adaptively adjust 
the importance of various structural information. 

The expression of GATE for the trimmed or padded input 
X̀ and Mh̀ = �1, Mh

leaf, Mh
dfg̀ , Mh

cfg̀ , Mh
call̀ �can be represented as 

follows: 

 GATE�X̀, Mh̀ � = ∑Wi ⋅ A�X̀, Mh̀ [i]� (12) 

Classifier 
We utilized a two-layer fully connected neural network 

followed by a softmax function as the defect classifier. To 
mitigate overfitting, we also incorporated dropout 
regularization. 

3.4. Fine-Grained Defect Localization 
Indeed, existing software defect datasets often provide 

defect labels at the file or function level due to various 
challenges, such as data collection difficulty and model 
complexity, which lead to the same prediction model 
granularity. However, not all code segments within a file or 
function labeled as defective are necessarily faulty. Therefore, 
even after defect prediction, code reviewers still need to invest 
considerable effort in reviewing the entire suspected module, 
although most of the code segments within the predicted 
defective module may not pose a high risk. 

In some previous work[2], [4], [9], [11], [21], researchers 
attempted to refine samples by combining code-slicing 
methods to achieve more fine-grained results. However, these 
methods tend to focus on specific types of vulnerabilities, and 
excessively fine-grained code slicing can significantly 
degrade prediction performance. Recently, some 
researchers[15], [16] proposed the hypothesis that "tokens 
contributing the most to predictions are likely to be 
vulnerable" and conducted validation studies. Building upon 
this hypothesis, we calculate statement defect risk scores by 
leveraging the self-attention values from each graph-guided 
encoder. 

 
Figure 4. Graph guided self-attention 
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Figure 5 GATE-based Fine-Grained Defect Localization 

As shown in Figure 5, in the final layer of the model, the 
attention matrix 𝑀𝑀𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛  of each GATE module is row-
summed to obtain the attention scores for each token: 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑡𝑡 = 𝑀𝑀𝐴𝐴 × [1,1, … ,1]𝑇𝑇 = �𝑠𝑠1𝑡𝑡 , 𝑠𝑠2𝑡𝑡 , … , 𝑠𝑠|𝑇𝑇|
𝑡𝑡 � (13) 

 In which, 𝑠𝑠𝑖𝑖𝑡𝑡  represents the score of token 𝑡𝑡𝑖𝑖  in that 
GATE module. Then, the scores of all tokens belonging to the 
same leaf are summed to obtain the score of the leaves:  

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑙𝑙 = (𝐴𝐴𝑙𝑙−𝑡𝑡 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑡𝑡)𝑇𝑇 = �𝑠𝑠1𝑙𝑙 , 𝑠𝑠2𝑙𝑙 , … , 𝑠𝑠|𝐿𝐿|
𝑙𝑙 � (14) 

Similarly, the scores of all leaves belonging to the same 
statement are summed to obtain the score of the statement:  

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑠𝑠 = (𝐴𝐴𝑠𝑠−𝑙𝑙 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑙𝑙)𝑇𝑇 = �𝑠𝑠1𝑠𝑠 , 𝑠𝑠2𝑠𝑠, … , 𝑠𝑠|𝑆𝑆|
𝑠𝑠 � (15) 

Finally, the scores of statements calculated by each GATE 
module are weighted summed element-wise to obtain the final 
score for each statement: 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∑𝑤𝑤𝑗𝑗𝑠𝑠 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑗𝑗𝑠𝑠 ∈ 𝑅𝑅𝟙𝟙×|𝑆𝑆|  

This score serves as the defect risk score for the statement, 
where a higher score indicates a higher likelihood of a defect. 

3.5. Training and prediction 
HDCGs are generated for each sample of the function 

level software defects dataset using the method described in 
Section III.A. The FINDGATE model is trained and 
hyperparameter tuned for function-level SDP tasks using the 

training set and validation set. The function-level and 
statement-level SDP performance of the trained model is 
evaluated on the test set. This approach significantly reduces 
the difficulty of obtaining training data because it does not 
require data with statement-level defect labels during training 
and tuning. 

4. EXPERIMENT 

4.1. Research Questions 
To validate our proposed FINDGATE, we presented and 

conducted the following research questions (RQs). We 
addressed the research problems and validated our proposed 
strategy by analyzing the experimental observations. 
RQ1: How accurate is our FINDGATE for function-level 

defect predictions? 
RQ2: How accurate is our FINDGATE for line-level defect 

localization? 
RQ3: What is the cost-effectiveness of our FINDGATE for 

line-level defect localization? 
RQ1 and RQ2 aim to validate the performance of the 

proposed method on coarse-grained and fine-grained tasks. 
RQ3 focuses explicitly on the cost-effectiveness validation of 
the proposed method. RQ2 and RQ3 also conducted 
experiments using the graph-only module to conduct ablation 
studies, intending to verify the contribution of the graph 
structure to task performance. 

4.2. Datasets 
In recent studies[6], [8], [13], [15], [16], [22], datasets 

such as Devign[6], Big-Vul[23], and LineDP-dataset[8] are 
commonly used for performance evaluation of these methods. 
To ensure experimental reproducibility and facilitate 
benchmark comparisons, we conducted an investigation on 
these datasets. Devign and Big-Vul are datasets that include 
real-world open-source C/C++ projects, while the LineDP 
dataset consists of Java projects. Due to the data collection 
process, Devign is a balanced dataset, whereas Big-Vul and 
LineDP-dataset reflect the imbalanced distribution of real-
world code. Big-Vul has function-level granularity with 
approximately three times the sample size of the LineDP-
dataset. 

We used the Big-Vul dataset, which was split into an 
8:1:1 ratio by LineVul[15]. HDCGs for 188,636 functions in 
the dataset were generated using the Augmented-CPG 
generator, and no cases of generation failure were observed (7% 
of samples encountered parsing failures in DeepDFA[22]). 

4.3. Experiment Design 
For RQ1, to verify the performance of the proposed 

FINDGATE on the function-level defect prediction task, it is 
compared with the following methods: Transformer-based 
methods, GNN-based methods, sequence-based methods 
(RNN, BiLSTM), and traditional machine learning (ML) 
based methods. 
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Table 1 compares methods for RQ1 
Type Method Year 

Transformer-based LineVul[15] 2022 
GNN+Transformer DeepDFA+LineVul[22] 2022 

GNN-based 

DeepDFA[22] 2022 
DeepVD[24] 2022 

Devign[6] 2019 
IVDetect[12] 2021 

Reveal[5] 2020 

BiLSTM-based SySeVR[2] 2018 
VulDeePecker[3] 2020 

RNN-based DeepLineDP[16] 2022 
Russell et al.[25] 2018 

ML-based LineDP[8] 2020 
Following the conventions in defect prediction research, 

we evaluated the performance of our method using precision, 
recall, and F1 score. 

For the baselines in RQ2 and RQ3, as shown in Table 2, 
we selected representative methods for line-level defect 
(vulnerability) localization: LineVul[15], DeepLineDP[16], 
and JITLine[14]. These methods are based on Transformer 
self-attention, RNN-attention, and LIME (Local Interpretable 
Model-Agnostic Explanations). Additionally, to conduct 
ablation experiments and investigate the effect of GATE, we 
trained a model that uses only graph-guided attention without 
the original attention (graph-only). 

Table 2 compares methods for RQ2&3 
Method Localization way Year 
LineVul Self-attention 2022 

DeepLineDP Attention 2022 
JITLine LIME 2021 

Graph-Only(ablation) Self-attention \ 
In accordance with the experiments of the baseline 

methods, for RQ2, we used the following metrics to evaluate 
the accuracy of line-level localization: 
1. Top-10 Accuracy: The probability that at least one real 

defective line is among the top ten lines ranked by risk in 
the defect samples. 

2. IFA (Initial False Alarm): The average number of lines 
that are needed to find the first defective line when 
inspecting according to risk rank. 

3. Total Effort: The average number of lines that need to be 
inspected to discover all the defective lines. 
For RQ3, we used the following metrics to evaluate the 

cost-effectiveness: 
1. Effort@20%Recall: The ratio of the number of lines 

inspected to discover 20% of the defective lines. It 
measures the efficiency of defect discovery. 

2. Recall@1%loc: The percentage of defective lines that 
can be discovered by inspecting only the top 1% of the 
lines ranked by risk. It indicates the effectiveness of the 
ranking strategy in identifying defects. 

5. RESULTS AND ANALYSIS 
The experimental results and analysis are presented in 

this section.  

5.1. RQ1: How accurate is our FINDGATE for function-
level defect predictions? 
The experimental results for RQ1 are presented in Table 

3, where the best performance is highlighted in bold. It can be 
observed from Table 3 that FINDGATE achieved the best 
performance in terms of precision, recall, and F1 score, 
surpassing LineVul, which also uses Transformer as the 
backbone model, by 1%, 5%, and 3%, respectively. 

Table 3 RQ1 results 
Type Method Precision Recall F1 

Transformer- 
based 

*FINDGATE 0.98 0.91 0.95 
LineVul[15] 0.97 0.86 0.92 

GNN+ 
Transformer 

DeepDFA+ 
LineVul[22] 0.98 0.90 0.94 

GNN- 
based 

DeepDFA[22] 0.54 0.90 0.67 
DeepVD[24] 0.70 0.78 0.74 

Devign[6] 0.26 0.18 0.21 
IVDetect[12] 0.23 0.72 0.35 

Reveal[5] 0.19 0.74 0.30 
RNN- 
based 

DeepLineDP[16] 0.42 0.83 0.56 
Russell et al.[25] 0.24 0.16 0.19 

BiLSTM- 
based 

SySeVR[2] 0.15 0.74 0.25 
VulDeePecker[3] 0.12 0.49 0.19 

ML-based LineDP[8] 0.48 0.17 0.25 
The closest performing method is DeepDFA+LineVul 

proposed by Steenhoek et al., which utilized GNN to learn 
structure and CodeBERT to learn semantics, achieving similar 
precision and slightly lower recall. Steenhoek et al. and we 
employed different approaches in incorporating code graph 
structure knowledge into the Transformer-based method, both 
resulting in improved performance, highlighting the positive 
contribution of graph structure knowledge to SDP tasks. 

Table 4 Average performance of different model types 
Type Precision(+/-) Recall(+/-) F1(+/-) 

*FINDGATE 0.98 0.91 0.95 
Transformer+Graph 0.98 0.91 0.94 
Transformer-based 0.97↑0.01 0.86↑0.05 0.92↑0.03 

GNN-based 0.54↑0.60 0.90↑0.25 0.67↑0.49 
Sequence-based 0.42↑0.75 0.83↑0.36 0.56↑0.65 

ML-based 0.48↑0.50 0.17↑0.74 0.25↑0.69 
Table 4 provides the average performance of different 

model types. Overall, the combination of graph knowledge 
and Transformer (FINDGATE and DeepDFA+LineVul) 
achieved the best performance, closely followed by the 
Transformer-only method (LineVul). The GNN-based 
methods, which leverage code graph knowledge, 
outperformed the sequence-based methods. Traditional ML 
methods showed relatively poor performance on our dataset. 
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Figure 6 SDP performance of different types of models 

5.2. RQ2: How accurate is our FINDGATE for line-level 
defect localization? 
Table 5 illustrates the performance of different methods 

on line-level defect localization, with the best score 
highlighted in bold for each metric. The differences between 
FINDGATE and other methods are provided in the upper right 
corner. It can be observed that FINDGATE achieved the best 
scores in top-10 accuracy, IFA, and total effort, which 
validated our proposed approach.  

Table 5 Performance on line-level defect localization 
Method Top-10 Accuracy IFA Total 

Effort 
*FINDGATE 0.8 5.48 0.49 

LineVul 0.65↑0.15 5.77↓0.29 0.52↓0.03 
DeepLineDP 0.59↑0.21 10.71↓5.23 0.56↓0.07 

JITLine 0.10↑0.70 24.20↓18.72 0.54↓0.27 
Graph-Only 0.48↑0.32 6.00↓0.52 0.55↓0.06 

In terms of top-10 accuracy, FINDGATE achieves a score 
of 0.80, while other baseline methods range from 0.10 to 0.65. 
FINDGATE's accuracy is 19%-88% higher than that of the 
other baseline methods. For IFA, FINDGATE achieves a score 
of 5.48, while other baseline methods range from 5.77 to 10.8. 
FINDGATE requires checking an average of 5%-77% fewer 
lines to discover the first defective line compared to other 
baseline methods. Regarding total_effort, FINDGATE 
achieves a score of 0.49, while other baseline methods range 
from 0.52 to 0.56. FINDGATE requires 6%-36% less effort 
compared to other baseline methods. 

LineVul, which also uses Transformer as the backbone 
model, achieved slightly lower performance, indicating that 
utilizing the built-in self-attention mechanism in Transformer 
for line-level defect localization is superior to the other two 
methods. 

 
Figure 7 Line-level defect localization performance 

In addition, we also attempted to perform line-level 
defect localization using only graph-guided self-attention. The 
results showed that it achieved accuracy only higher than 
JITLine, and achieved better IFA compared to both JITLine 
and DeepLineDP. It might be safe to conclude that semantic 
knowledge contributes the most to line-level defect 
localization, followed by graph structure knowledge. 

5.3. RQ3: What is the cost-effectiveness of our FINDGATE 
for line-level defect localization? 
Table 6 presents the cost-effectiveness of each method in 

line-level defect localization, with the best score highlighted 
in bold for each metric. The differences between each method 
and FINDGATE are shown in the upper right corner. It can be 
observed that FINDGATE achieves the best results in both 
Effort@20%Recall and Recall@1%LOC. 

Table 6 Cost-effectiveness on line-level defect localization 
Method Effort@20%Recall Recall@1%LOC 

*FINDGATE 0.0088 0.22 
LineVul 0.0107↓0.002 0.19↑0.03 

DeepLineDP 0.0208↓0.012 0.03↑0.19 
JITLine 0.0150↓0.006 0.09↑0.13 

Graph-Only 0.0148↓0.006 0.13↑0.09 
In terms of Effort@20%Recall, FINDGATE achieves a 

score of 0.0088, while other baseline methods range from 
0.0107 to 0.0208. FINDGATE requires 18%-58% less effort 
than other baseline methods, meaning FINDGATE needs less 
effort to identify the same number of defective lines. 

In terms of Recall@1%LOC, FINDGATE achieves a 
score of 0.22, while other baseline methods range from 0.02 
to 0.19. FINDGATE discovers 16%-87% more defective lines 
compared to other baseline methods, which means that 
FINDGATE can identify more defective lines with the same 
effort. 
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Figure 8 Cost-effectiveness of line-level defect localization 

6. THREATS TO VALIDITY 

6.1. Construct Validity 
The threat to structural validity is related to the dataset 

selection. We used a version of the Big-Vul dataset[23] split 
by Fu et al.[15] We did not use some commonly used public 
defect prediction datasets[26] because they only provide file-
level or function-level labels, which are not suitable for line-
level research. Pornprasit’s dataset[16] has line-level labels, 
but the samples are at the file granularity rather than the 
function granularity, and the dataset size is relatively small. 
To ensure a fair comparison, we selected the same dataset, 
Big-Vul, as LineVul[15], IVDetect[12], and DeepDFA[22] et 
al. 

Additionally, JITLine[14] was not included in the 
comparison in RQ1 because its prediction task focuses on 
code changes under just-in-time scenarios, which makes it 
difficult to compare directly. As a substitute, we compared our 
approach with Line-DP[8] in RQ1, which also utilizes 
BOW+RF. 

6.2. External Validity 
The external validity threats are related to the 

generalizability of our FINEGATE method. We conducted 
experiments on the large-scale line-level defect dataset, Big-
Vul, to ensure a fair comparison with other methods. However, 
in future work, exploring other line-level defect datasets 
would be valuable to further validate our approach's 
effectiveness. 

6.3. Internal validity 
The internal validity threats are related to the 

hyperparameter settings during the fine-tuning of the 
FINEGATE model. For the backbone model, we used the 
default hyperparameter settings of the encoder in codeT5 to 
avoid the computational cost of hyperparameter tuning for a 
transformer model with millions of parameters, which is 
beyond our resource constraints. Additionally, due to time and 

resource limitations, the FINDGATE model used in this study 
was only trained for 10 epochs. Increasing the number of 
training epochs may improve the performance of the model. 

In our experiments, we directly used the LineVul model 
trained by Fu et al[15]. We also used open-source 
reimplementation packages to experiment with models like 
DeepLineDP2, DeepVD3 and DeepDFA4. For models such as 
IVDetect that were not reproducible (which is also a concern 
in other studies), we reused the results reported in Fu and 
Steenhoek's papers[12], [15], [22], ensuring strict consistency 
in the data partitioning method. 

To mitigate these threats, we will provide detailed 
experimental data publicly, and we expect to complete the 
organization and release of our replication package within half 
a year after the publication of our paper, which will enhance 
the transparency of our work. 

7. CONCLUSION 
In the field of defect prediction and vulnerability 

detection, fine-grained localization at the line level has gained 
significant attention. In this paper, we propose FINDGATE, a 
method for defect prediction and fine-grained localization that 
leverages transformer-based models to learn code structure 
and semantic knowledge simultaneously. Using the 
innovative GATE (Graph-guided Attention Transformer 
Encoder) to learn HDCG, we address the limitations of other 
methods that attempt to learn graph knowledge, such as loss 
of structural information, input sequence redundancy, and 
over-complexity. 

By conducting empirical evaluations on large-scale real-
world datasets and comparing FINDGATE with state-of-the-
art methods such as LineVul and DeepDFA, we demonstrate 
that FINDGATE achieves the following: 
1) In function-level prediction tasks, FINDGATE performs 

slightly better than the state-of-the-art method 
DeepDFA+LineVul (which used a more complicated 
model) and shows 3%-392% F1 score improvements 
compared to other baseline methods. 

2) In line-level localization tasks, FINDGATE achieves a 
19%-88% improvement in top-10 accuracy and reduces 
effort by 18%-58% in terms of cost-effectiveness. 

3) Through the ablation experiments of a graph-only model 
in RQ2&RQ3, we further validate the positive 
contribution of graph structure knowledge to model 
performance. 

Therefore, by integrating code graph structure knowledge 
with semantic knowledge, the FINDGATE model can assist 
software testing analysts in defect prediction and localization 
more accurately and efficiently. 
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