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Abstract—Code completion has become an important fea-
ture of today’s integrated development environments (IDEs).
This task involves predicting the next code token(s) based
on its contextual information within the code. However, most
existing code completion approaches do not consider users’
feedback during the completion process. In this paper, we
propose a framework, EHOPE (Enhance Code Completion
with Implicit Feedback), which exploits LSTM(Long Short-
Term Memory) and pre-trained model BERT(Bidirectional
Encoder Representation from Transformers) to enhance the
performance of token-level code completion. By leveraging
users’ feedback information, we train an LSTM model to
supplement the recommendation list. In addition, we re-rank
the list of recommendations using the pre-trained model BERT,
which is fine-tuned with feedback information. Existing token-
level code completion tools can be plugged into EHOPE.
We choose two representative code completion approaches
from different categories: one based on statistical methods
and the other based on deep learning. These approaches
serve as baselines to showcase the performance improvements
of EHOPE, evaluated using Hit@k (Top-k) and MRR(Mean
Reciprocal Rank) metrics. Empirical experiments show that
the recommendation performance steadily and substantially
improves as the feedback data increases compared with the
baselines.

Keywords–Code Completion; Code Suggestion; Deep Neu-
ral Networks; Pre-training Model

1. INTRODUCTION

Integrated development environments (IDEs) have become
essential paradigms for modern software engineers, as IDEs
provide a set of helpful services to accelerate software de-
velopment [1]. One of the most beneficial functions in IDEs
is intelligent code completion, which uses the context of
existing code to suggest the next probable code tokens. While
some code completion approaches rely solely on the given
context [2], [3], [4], some methods incorporate more extensive
information, such as code token types [5], abstract syntax tree
(AST) structures [1], [6], or extended hierarchical context [7].
Nonetheless, the existing approaches are limited in the scope
of information they utilize. Only a few of these approaches
take users’ feedback into account in the recommendation
process [8]. Such information is often critical in enhancing
the performance of code completion.

Feedback information refers to the data collected and an-
alyzed from users’ interactions with a product, service, or

system during a recommendation session. In conventional
recommendation systems [9], feedback information can signif-
icantly improve the accuracy of recommendations [10], [11].
Typically, this feedback is implicit rather than explicit, such
as users’ ratings. By observing users’ behavior, including their
selections, duration, repetition, purchases, and more [12], we
can gather implicit feedback that indirectly reflects their opin-
ions [13]. During the process of code completion, selecting
a recommended token from the recommended list typically
signifies its usefulness in helping the user complete their code.
Therefore, in this process, the user’s choice can be seen as a
kind of implicit feedback. In fact, feedback from programmers
often leads to the correct answer for code completion, playing
an important role in handling similar scenarios and improving
the performance of the recommendation system in the future
[14], [15]. This underscores the critical role that feedback
plays in code completion systems, which may be even more
significant than in traditional recommendation systems. Prior
research in code completion has largely overlooked the im-
portance of incorporating users’ feedback. Traditional code
completion techniques ignore the valuable insights that users
can provide. These approaches often fall short of accurately
predicting the desired code snippets and fail to capture the
context-specific preferences and nuances of individual devel-
opers.

Without considering users’ feedback, code completion sys-
tems often struggle to handle complex and evolving program-
ming scenarios. They may produce suboptimal suggestions
that do not align with the developer’s intentions, leading to
frustrating and time-consuming manual edits. This limitation
hinders the productivity and efficiency of developers, espe-
cially when dealing with unfamiliar or intricate codes.

In this paper, we introduce a framework named EHOPE
(Enhance Code Completion with Implicit Feedback) that
aims to enhance recommendation performance through the
utilization of implicit feedback information. We keep track
of the code segment being completed along with the user-
selected token during each code completion session and store
these pairs in our feedback repository. Tokens are regarded
as feedback information for code segments. By integrating
feedback information, our framework not only improves the
effectiveness of token-level code completion but also enables
personalized recommendations. Specifically, based on users’
personal interaction history, EHOPE generates distinct recom-
mendation lists for each user when completing the same code
segment. Moreover, our framework can incorporate existing
recommendation methods as components, providing a flexible
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and customizable solution for various recommendation scenar-
ios.

To efficiently incorporate users’ feedback into our code
completion system, we utilized an LSTM model, which was
trained with feedback data. By leveraging the LSTM model’s
ability to learn from feedback, we can expand the initial
recommendation list produced by the third-party code com-
pletion tool to include feedback information. Additionally, we
employed a pre-trained BERT [16] model to re-order the list of
recommendations. BERT is a deep transformer model that has
been pre-trained for language modeling, and it has been widely
acknowledged for its remarkable performance in multiple
classification and sequence labeling tasks. Notably, Nogueira
and Cho [17] were the first to showcase its effectiveness in
ranking tasks. We employ feedback information to fine-tune
the model. Then we construct a sentence pair, comprising
the code segment to be completed and each recommendation
item in the list, as input of the next sentence prediction
(NSP) task and feed it into BERT. By doing so, we could
determine whether the recommendation item was the next
sentence to follow the code segment being completed. Based
on BERT’s predictions, we were able to reorganize the list
of recommendations. In general, we use the deep neural
network and the pre-trained model that learn from the feedback
repository and work together to optimize recommendations.

To illustrate the effectiveness of EHOPE, we have opted
for N-gram [18] and CodeGRU [2] as our baseline mod-
els. N-gram stands as a representative of statistical-based
code completion methods, while CodeGRU exemplifies deep
learning-based code completion approaches. The rationale
behind selecting these two baselines lies in twofold: firstly,
they epitomize distinct methodological paradigms in the realm
of code completion, allowing for a comparative assessment of
their performance. Secondly, N-gram, a venerable technique,
possesses a rich history of application and widespread use
in code completion research, while CodeGRU embodies the
contemporary shift toward deep learning in the field. We as-
sessed the performance of these baselines using Hit@k/Top-k
accuracy and MRR metrics. With the continuous accumulation
of feedback information, we were able to improve the Top-1
accuracy of N-gram and CodeGRU by 28.04% and 7.99%,
respectively.

The following are the primary contributions of this paper.
• We introduce a novel framework, EHOPE, which en-

hances token-level code completion accuracy by integrat-
ing programmers’ feedback information through the use
of LSTM and pre-trained model BERT.

• We present the results of a thorough empirical study
in which we compare EHOPE to two widely adopted
code completion systems. Our findings demonstrate that
EHOPE outperforms these systems.

Our aim is not to propose yet another recommendation
method, but rather to improve the performance of token-level
code completion and make it applicable to a wide range of
existing completion systems. To the best of our knowledge,
this work represents one of the initial attempts to incorporate

LSTM, a pre-trained model, and feedback information in code
completion, thereby enhancing its accuracy and efficiency.

Structure of the paper. In section 2, the background of
this research is introduced, followed by section 3 which
provides the details of our approach. Section 4 presents the
experimental settings and comparative results on related code
completion systems, while sections 5 and 6 discuss threats
to validity and related work respectively. Lastly, section 7
outlines the future research and draws a conclusion.

2. BACKGROUND

2.1 LSTM

Long Short-Term Memory (LSTM) is a type of recurrent
neural network (RNN) that is designed to overcome the issue
of vanishing gradients in traditional RNN. Unlike traditional
RNN, LSTM is capable of selectively retaining or forgetting
information over long periods of time.

LSTM consists of a network of memory cells that are
connected through a set of gates, including the input gate,
forget gate, and output gate. The input gate determines which
information from the input should be stored in the memory
cell, the forget gate decides what information should be dis-
carded from the memory cell, and the output gate determines
what information should be outputted from the memory cell.
The structure of the LSTM is shown in Figure 1.

Memory Cell

Output Gate

Input Gate

Forget
Gate

Z

Zi

Zf

Zo

Yt

Figure 1: LSTM architecture.

Y t represents the output at time step t. And Z denotes the
preprocessed input, whereas Zi, Zf , and Zo correspond to the
gate control signals of the input gate, the forget gate, and the
output gate, respectively. And the calculation formula of Z,
Zi, Zf and Zo is as follows.

Z = tanh(W · [xt, ht−1] + b) (1)

Zi = σ(W i · [xt, ht−1] + bi) (2)

Zf = σ(W f · [xt, ht−1] + bf ) (3)

Zo = σ(W o · [xt, ht−1] + bo) (4)

xt represents the input at the current time step and ht−1

represents the hidden state at the previous time step.
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The calculation process of the output Yt at time step t is as
follows.

1) Calculate the cell state Ct at time step t. ◦ represents
the Hadamard product.

Ct = Zf ◦ Ct−1 + Zi ◦ Z (5)

2) Calculate the hidden state ht at time step t.

ht = Zo ◦ tanh(Ct) (6)

3) Calculate the output Yt at time step t.

Y t = σ(W y · ht + by) (7)

The LSTM architecture allows for the storage and retrieval
of information over long periods of time, making it especially
useful in applications that require the modeling of complex
and structured sequential data. Additionally, the ability to
selectively remember or forget information at each time step
gives LSTM a unique advantage over other types of RNNs in
modeling long-term dependencies in data.

Overall, LSTM has been proven to be a powerful tool
in the field of deep learning, and its ability to capture and
model long-term dependencies in sequential data has led to
its widespread adoption in a variety of applications, including
speech recognition [19], [20], natural language processing
[21], [22], [23], and time series prediction [24].

2.2 BERT

BERT (Bidirectional Encoder Representations from Trans-
formers) is a powerful pre-trained model developed by Google.
Its architecture is shown in Figure 2. It is designed to capture
the meaning of natural language more accurately than previous
models by using two pre-training tasks: masked language
modeling (MLM) and next sentence prediction (NSP). In
MLM, BERT is trained to predict a randomly masked word
in a sentence, forcing it to consider the entire sentence for
context. In NSP, BERT is trained to predict whether two
sentences are contiguous or not, encouraging it to understand
the relationship between sentences.

Figure 2: BERT architecture [16].

BERT has revolutionized the field of natural language pro-
cessing by achieving state-of-the-art performance on a range
of tasks, including text classification, question answering, and
language generation. Its ability to handle both context and
ambiguity makes it a powerful tool for tasks that require

understanding natural language. Furthermore, BERT can be
fine-tuned on downstream tasks with relatively small amounts
of task-specific data [25], and this availability has made it
easier for researchers and developers to apply BERT to their
own NLP problems [26], allowing for faster and more accurate
results. Overall, BERT has become a widely adopted and
influential pre-trained language model in the field of natural
language processing, offering a powerful tool for a range of
practical applications.

3. APPROACH

As depicted in Figure 3, the EHOPE framework is primarily
comprised of four components.

Code 
Segment

Code 
Completion Tool Initial Token List

1、Initial code token recommendation

Input:

Feedback
Repository

User selects the 
correct token

LSTM Merged List

2、The feedback repository

3、The expansion engine

BERT

4、The ranking engine

Re-ranked 
Token List

Output:

FB_based Token 
List

Train

Train

Figure 3: The overview of EHOPE.

a) Initial code token recommendation. An initial list of
recommended tokens is generated based on the given
code segment input. This list is obtained by utilizing
the existing algorithms for token-level code completion
applied to the input code segment.

b) The feedback repository consists of pairs of code seg-
ments and their corresponding recommended tokens. For-
mally, it can be represented as a set of pairs (CS, Tk),
where CS represents a code segment and Tk represents
the recommended token chosen by users. As users select
tokens from the token list, their choices are recorded in
the feedback repository as pairs of the code segment and
selected token. Initially, the feedback repository is empty,
but it grows as users interact with the system.

c) The expansion engine which supplements the initial token
list when a code segment is given. For each code segment,
the LSTM model trained with feedback data generates its
own list of recommendations, which can be merged with
the initial token list (cf. Section III.A).

d) The ranking engine which ranks the recommended tokens
for a code segment. To this end, the engine applies
the pre-trained model BERT which is fine-tuned with
feedback data to predict the score (cf. Section III.B).

Our approach can be summarized in the following workflow.
1) When a user provides a code segment CS to the system,

a base code completion method is employed to provide
an initial token list LCS .
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2) The expansion engine receives the code segment to be
completed and generates the token recommendation list
LFB , along with the probability value of each token
based on the feedback information. Then, LFB is com-
bined with the LCS to form a merged list LMG, with the
tokens ordered by their probabilities in decreasing order.

3) The ranking engine takes CS and LMG as inputs and
applies the pre-trained model BERT fine-tuned with feed-
back data to determine the NSP relationship between
CS and each token in LMG. Then LMG is reordered
based on BERT’s prediction, and the system presents new
recommendations to the users.

The feedback repository is a critical component of our
framework, which is continuously updated throughout the
system’s lifetime based on user interactions. At the initial
stage, the feedback repository is empty, so EHOPE provides
an initial token recommendation list as output. When users
(e.g., programmers) are presented with recommended tokens,
they are implicitly asked to label the most relevant ones as the
“ground-truth” recommendations for the given code segment.
This feedback, in the form of code segment-token pairs, is
stored in the feedback repository. With more user interactions,
the feedback repository gradually grows and becomes more
comprehensive.

In general, the feedback repository is used in training
the LSTM and BERT. However, to improve efficiency and
avoid unnecessary computational overhead, we do not retrain
these models every time new feedback data is added to the
repository. Instead, we schedule retraining to occur after a
certain amount of new data has been collected. By doing so,
we can balance the need for high-ranking precision with the
practical constraints of the system.

3.1 Supplementing recommendation token list
In this section, we outline the operations of the expansion

engine. As previously mentioned, we utilize an LSTM neural
network to learn from the feedback repository and generate
token recommendations for the code completion task. The
LSTM takes in a code segment as input and produces a
sequence of hidden states based on its internal memory cell
and operations of three gates. Specifically, the LSTM’s internal
memory cell allows it to remember relevant information from
previous tokens, while its input gate operation controls the
flow of new information into the memory cell. Under the
operation of the output gate, the output of the LSTM is the
final hidden state, which is then fed into a fully connected layer
to generate the token recommendation list LFB , where each
recommendation has a corresponding probability value. The
initial token recommendation list LCS generated by the basic
code completion tool also has corresponding probabilities. The
two lists are then merged by sorting the tokens in order of their
probability from greatest to smallest, resulting in the merged
list LMG. Mathematically, according to equation (1-6), this
can be represented as follows:

LSTM output:

ht = f(Wh · ht−1 +W x · xt) (8)

Token recommendation:

LFB = softmax(W y · hT + by) (9)

List merging:

LMG = sort(LFB ∪ LCS) (10)

Here, xt represents the input token at time step t, ht

represents the hidden state at time step t, Wh and W x are
the weight matrices for the hidden state and input token,
respectively, and W y is the weight matrix for the output layer.
The function f is the LSTM cell operation, which consists of
the internal memory cell and gate operations.

3.2 Re-ranking recommendation token list

In this section, we provide an overview of the functions
performed by the ranking engine. To further improve the
recommendation quality, we fine-tune a pre-trained BERT
model using the feedback repository. Each token in the LMG is
treated as a separate sentence, and we construct two sentences
by concatenating the code segment and each token in the LMG

recommendation list, respectively. The special [CLS] token is
added at the beginning of the first sentence to indicate the
classification task, and the [SEP] token is used to separate the
two sentences. BERT’s input structure is shown in Figure 4.

Token 1 Token 2 Token n……[CLS] [SEP] Token [SEP]

Code Segment

token in the LMG

Figure 4: BERT’s input structure.

The input to the fine-tuned BERT model is a sequence
of tokens, and the output is a sequence of hidden states.
The [CLS] token is used as a special token to encode the
aggregated information of the entire sequence, which is used
for downstream tasks such as classification. The classification
output of the [CLS] token can be computed using the following
equation.

ClsOutput = softmax(W out · hCLS + bout) (11)

where hCLS is the hidden state of the [CLS] token, and
W out and bout are learned parameters of the classification
layer.

The concatenated sentences are then fed into the fine-tuned
BERT model, and the output of the [CLS] token is used to
determine whether the token is the next sentence of the code
segment. Specifically, the predicted probabilities are used to
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reorder the LMG, with the tokens predicted as “yes” positioned
before those predicted as “no”. Tokens predicted as “yes” and
sharing the same predicted probability are kept in their original
relative order. This process results in a reordered list that we
return to the users.

4. EVALUATION

In this section, we assess the effectiveness of our proposed
EHOPE approach. To achieve this, we address the following
research questions (RQs).

RQ1 How effective is our method to complete code for given
code segments in general?

RQ2 How does the utilization of feedback information enhance
the performance of EHOPE in code completion? Specifi-
cally, how does the size of the feedback repository affect
the performance of code completion?

RQ3 How do LSTM and BERT contribute to EHOPE respec-
tively?

4.1 Baselines
The EHOPE approach can be regarded as a supplemen-

tary technique that can be integrated with existing token-
level code completion systems. In this work, we choose two
representative systems, N-gram and CodeGRU, as baselines
for comparison.

N-gram [18] is a widely used statistical language model that
predicts the next word in a sequence based on the previous N-
1 words. In our experiment, we implement an N-gram model
ourselves.

CodeGRU [2] is a context-aware source code modeling
model that performs well in code completion. It collects open-
source Java projects from GitHub to build training and testing
datasets. The training dataset was constructed from a project
named “antlr”, which had 56,085 lines of code and 407,248
code tokens. The testing dataset was constructed from a project
named “batik”, which had 195,652 lines of code and 1,246,157
code tokens.

For our experiments, we use the existing datasets provided
by CodeGRU. However, due to resource constraints, when
comparing with these two baselines, instead of using the entire
testing dataset, we randomly selected 20,000 lines of code to
test. For each line of test code, the last token is the correct
recommendation, which we treat as (pseudo) feedback from
the user in the experiment.

4.2 Performance metrics
We adopt two commonly used metrics in the literature (e.g.,

[2], [27], [28]) to evaluate the effectiveness of our approach.
• Hit@k/Top-k Accuracy, witch measures the percentage

of correct predictions among the top-k ranked candidates
suggested by the system. In other words, given a set of
k predictions, the top-k accuracy measures how many of
them are correct. For example, if k is 5 and the correct
prediction is among the top 5 candidates, the system is
considered to have achieved a top-5 accuracy. Formally,

Hit@k =
cnt(k)

|C|
(12)

where cnt(k) represents the number of code segments
whose correct next token appears in the top-k, and |C| is
the total number of the code segments.

• MRR (Mean Reciprocal Rank) is a metric that measures
the performance of a code completion model by taking
into account the location index of the correct token in the
predicted list. Specifically, it calculates the reciprocal of
the index of the correct token and takes the mean value
of all the reciprocal values obtained for all the test cases.

MRR =
1

|C|

|C|∑
i=1

1

ranki
(13)

where ranki represents the ranking position of the correct
token in the i− th code segment.

4.3 Experimental Results
RQ1. How effective is our method to complete code for given
code segments in general?

In our experiments, we evaluate the effectiveness of our
approach on the testing datasets. After each test, the code
segment and the user-selected token (which in the experiment
is the correct token) are considered as (pseudo) feedback and
added to the feedback repository. Once the number of feedback
increases by 4000, the LSTM and BERT are retrained. We
compare the results of N-gram and CodeGRU baselines before
and after using EHOPE framework, and the results are shown
in Table 1. ‘Original’ indicates the result of N-gram or
CodeGRU.

TABLE I: Evaluation results for our framework comparing
with baselines (‘Abs. imp.’ stands for ‘absolute improvement’;
‘Rel. Imp.’ stands for ‘relative improvement’)

Approach Technique Hit@1 Hit@3 Hit@5 Hit@10 MRR

EHOPE
+

N-gram

Original 0.2194 0.2578 0.2653 0.2702 0.2394
ours 0.4998 0.6319 0.6759 0.7191 0.5764

Abs. Imp. 28.04% 37.41% 41.06% 44.89% 33.70%
Rel. Imp. 127.80% 145.11% 154.77% 166.14% 140.77%

EHOPE
+

CodeGRU

Original 0.5187 0.6896 0.7397 0.7847 0.6139
ours 0.5986 0.7576 0.8056 0.8425 0.6867

Abs. Imp. 7.99% 6.8% 6.59% 6.78% 7.28%
Rel. Imp. 15.40% 9.86% 8.91% 8.64% 11.86%

Table I indicates a significant improvement in almost all
metrics compared to the baselines. Specifically, our EHOPE
approach outperforms the baselines by 127.80%, 145.11%,
154.77%, 166.14%, 140.77% for N-gram and 15.40%,
9.86%, 8.91%, 8.64%, 11.86% for CodeGRU. This result
demonstrates the effectiveness of our feedback repository in
enhancing the performance of code completion.

RQ2. How does the size of the feedback repository
affect the performance of EHOPE?

In Experiment 1, we add feedback for each test item to the
feedback repository, where the maximum number of feedback
is equal to the size of the testing dataset. In Experiment 2,
we aim to investigate the impact of the number of feedbacks
on code completion performance. Therefore, we limit the
maximum number of feedback in the repository and increase
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it by 20% for each subsequent experiment. The baseline
corresponds to the case where the maximum number of
feedback in the repository is 0%, indicating that the feedback
repository does not participate in the code completion process.
The experimental results are presented in Table II.

TABLE II: Performance comparison with varying feedback
repository sizes

Approach Metric Original 20% 40% 60% 80% 100%

EHOPE
+

N-gram

Hit@1 0.2194 0.3894 0.4738 0.4848 0.4875 0.4998
Hit@3 0.2578 0.5491 0.6059 0.6174 0.6340 0.6319
Hit@5 0.2653 0.6159 0.6468 0.6623 0.6766 0.6756
Hit@10 0.2702 0.6704 0.6907 0.7059 0.7187 0.7191
MRR 0.2394 0.4837 0.5489 0.5617 0.5698 0.5764

EHOPE
+

CodeGRU

Hit@1 0.5187 0.5623 0.5770 0.5783 0.5918 0.5986
Hit@3 0.6896 0.7143 0.7428 0.7457 0.7543 0.7576
Hit@5 0.7397 0.7662 0.7900 0.7952 0.7985 0.8056
Hit@10 0.7847 0.8204 0.8335 0.8369 0.8387 0.8425
MRR 0.6139 0.6504 0.6683 0.6707 0.6808 0.6867

To provide a clearer illustration of the trend, we have
plotted the results in Figure. 5. It can be observed that there
is a consistent improvement in performance as the size of
the feedback repository accumulates. This trend is observed
in both of the baselines, which suggests the robustness and
versatility of our approach for token-level code completion.
Notably, all the metrics show significant enhancement, with
N-gram achieving a MRR increase of 33%, and CodeGRU
achieving a MRR increase of over 7%.

(a) The performance of N-gram.

(b) The performance of CodeGRU.

Figure 5: Learning curves of EHOPE with feedback
information for baselines.

Arguably, the most significant improvement in our approach
is observed in the Hit@1 metric, which indicates that our
method can accurately rank the correct next token to the
top-1 position by leveraging the feedback information. As
illustrated in Figure. 6, the Hit@1 metric exhibits a substantial

Figure 6: The performance metrics of Baselines Hit@1.

increase in both baselines, with an improvement of 28.04%
for N-gram and 7.99% for CodeGRU.

RQ3. How do LSTM and BERT contribute to EHOPE
respectively?

Recall that our approach makes use of two models, i.e.,
LSTM and BERT. To clarify the extent to which each model
contributes to the performance enhancement of EHOPE, we
conducted an ablation analysis on our approach. This exper-
iment involved disabling either the LSTM or BERT model
and recording the corresponding performance metrics. We then
compared the results of the baselines with those of LSTM
and BERT separately. The detailed experimental findings are
presented in Table III.

TABLE III: Evaluation results for our framework comparing
with baselines (‘Rel. Imp.’ stands for ‘relative improvement’)

Approach Technique Hit@1 Hit@3 Hit@5 Hit@10 MRR

EHOPE
+

N-gram

Original 0.2194 0.2578 0.2653 0.2702 0.2394
LSTM 0.4928 0.6240 0.6681 0.7145 0.5702
BERT 0.2227 0.2584 0.2653 0.2702 0.2412

EHOPE 0.4998 0.6319 0.6756 0.7191 0.5764
Rel. Imp. LSTM 124.61% 142.05% 151.83% 164.43% 138.18%
Rel. Imp. BERT 1.50% 0.23% 0% 0% 0.75%

Rel. Imp. EHOPE 127.80% 145.11% 154.77% 166.14% 140.77%

EHOPE
+

CodeGRU

Original 0.5187 0.6896 0.7397 0.7847 0.6139
LSTM 0.5858 0.7512 0.7985 0.8360 0.6765
BERT 0.5645 0.7090 0.7507 0.7870 0.6448

EHOPE 0.5986 0.7576 0.8056 0.8425 0.6867
Rel. Imp. LSTM 12.94% 8.93% 7.95% 6.54% 10.20%
Rel. Imp. BERT 8.83% 2.81% 1.49% 0.30% 5.03%

Rel. Imp. EHOPE 15.40% 9.86% 8.91% 8.64% 11.86%

The experimental results presented in the table reveal the
impact of LSTM and BERT models on enhancing code com-
pletion performance. The two models make distinct contribu-
tions to both baselines, with a consistent improvement trend
observed for each. When comparing the performance of BERT
alone to the N-gram baseline, we observe a relatively modest
improvement. This can be attributed to the inherent limitations
of the initial recommendation list generated by the N-gram
model. Since we do not incorporate LSTM to augment the
recommendations, the enhancement achieved by solely using
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BERT is constrained. Besides, we also find it interesting that
the models focus more on improving metrics such as Hit@1,
Hit@3, and MRR, rather than Hit@5 and Hit@10. Among
these, Hit@1 has the most significant impact. Although LSTM
and BERT optimize the performance in different ways, our
findings indicate that neither of them outperforms the com-
bined approach, which validates the methodology used by
EHOPE.

5. LIMITATIONS AND THREATS TO VALIDITY

5.1 Limitations

One of the limitations of this work is the reliability of users’
feedback. The choices and feedback provided by users play
a crucial role in model training and improvement. However,
user feedback can be influenced by individual preferences, user
errors, or other factors, introducing a certain level of noise. A
solution to this problem is to employ appropriate techniques
for data filtering and noise reduction to identify and eliminate
potential erroneous or outlier feedback. Another limitation of
this work is the lack of data in the feedback repository during
the initial stages, which hinders its effective participation in the
training of LSTM and BERT models. In our future work, we
consider using techniques such as active learning to overcome
this limitation and to provide a more robust approach.

5.2 Construct Validity

While our experiments provide comprehensive details and
demonstrate the efficacy of our approach, it should be noted
that altering the neural network settings for training or eval-
uating on different test sets may produce varying outcomes.
Additionally, the choice of evaluation metrics poses a potential
challenge to ensure construct validity. Although the widely
adopted Top-k metric [29], [30], [31] is commonly employed
for assessing deep learning-based source code models, we
further evaluate our proposed approach using the MRR metric
[31], [32] to reinforce its effectiveness and mitigate this
potential concern.

5.3 Internal Validity

Internal validity threats refer to potential experimental errors
and biases [33]. In this study, the main threats arise from
possible biases in the data. To address this concern, we use
the same data published in the replication packages of the
original work to ensure a fair comparison with the baselines.
Furthermore, to minimize the possibility of errors during re-
implementation, we directly employ the tools provided by the
original authors.

5.4 External Validity

Threats to external validity refer to the ability to generalize
the results of the experiments to other scenarios beyond the
scope of the study [33]. As with any empirical investigation,
it is difficult to ensure that our framework will perform
effectively when applied to third-party completion approaches.
However, we are confident that the two widely adopted tools

chosen to showcase the benefits of our approach are indica-
tive, and our extensive experiments effectively illustrate the
performance improvements achieved.

5.5 Conclusion Validity

In addressing conclusion validity, our study maintains re-
liability through consistent experimental conditions, the use
of multiple evaluation metrics, and transparent methodology
reporting. These practices ensure that our findings concerning
the effectiveness of the EHOPE framework in code completion
are well-supported and generalizable, enhancing the confi-
dence in our conclusions.

6. RELATED WORK

6.1 Code Completion Based on Statistic

Code completion is a topic of great interest in software
engineering research. Early approaches to code completion
relied on heuristic rules and static-type information to provide
suggestions [34]. And researchers [30] have discovered that
source code exhibits certain statistical properties that can be
effectively modeled using statistical language models [35],
[36], [37], [38]. The N-gram model, in particular, has been
widely used for this purpose. However, the traditional N-gram
model fails to capture the unique property of localness in the
source code [39]. To overcome this limitation, researchers have
proposed various modifications to the N-gram model, such
as adding a cache mechanism [39] or considering unlimited
vocabulary, nested scope, locality, and dynamism [35]. These
improved models have been shown to achieve better perfor-
mance than traditional N-gram based approaches.

6.2 Code Completion Based on Deep Learning

In recent years, deep learning techniques started to be
employed in code completion research [40]. White et al. [29]
conduct experiments and find that a relatively straightforward
RNN model can achieve better results than n-gram models
in specific software engineering tasks, including code sugges-
tion. Svyatkovskiy et al. [41] develop an LSTM-based code
completion system for recommending Python method calls,
which is integrated into the Intellicode extension for Visual
Studio Code. Hussain et al. [42] propose a deep semantic
net (DeepSN) to leverage the semantic information in the
source code for improving code suggestion. DeepSN employs
an enhanced hierarchical convolutional neural network with
code-embedding to extract top-notch features and learn useful
semantic information, and utilizes long short-term memory
to capture long and short-term context dependencies in the
source code. Li et al. [1] introduce a pointer mixture network
to tackle the problem of out-of-vocabulary (OOV) tokens
in code completion. Karampatsis et al. [4] present a novel
open-vocabulary neural language model for source code that
uses the BPE algorithm, beam search, and cache mechanism
to predict OOV tokens and reduce vocabulary size. The
results of their experiments show that this model outperforms
both N-gram models and closed vocabulary neural language
models, achieving state-of-the-art performance in token-level
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code completion. Liu et al. [3] propose a code completion
model based on a vanilla LSTM network, while Kim et al. [6]
present a transformer model that leverages syntactic structure
to enhance performance. Hussain et al. [43] present a novel
transformer-based self-supervised learning technique, Trans-
former Gated Highway, which surpasses comparable recurrent
and transformer models and boosts the modeling performance
for the source code suggestion task such as code completion.

6.3 Ranking Recommendation Results

In addition to various code completion approaches, several
initiatives have addressed the ranking of recommendation
candidates. Many of these initiatives utilize machine learning
techniques. For instance, Niu et al. [44] employ the LTR
(Learning to Rank) technique to provide code example rec-
ommendations based on user queries. They utilize a pair-
wise LTR algorithm to train a ranking schema that can be
effectively utilized for future queries. This approach enables
the generation of accurate and relevant code examples for
users’ needs. In contrast to our approach, they do not in-
corporate users’ feedback in their recommendation process.
Zhou et al. [14] also applied LTR techniques. Additionally,
they employed active learning techniques to establish a new
API recommendation model. They utilized users’ selection
history as feedback information to enhance the performance of
query-based API recommendation systems. Though the work
leverages the feedback information as ours, it addresses the
API recommendation problem. Wang et al. [45] introduce an
active code search approach that integrates feedback into the
code search process. Their approach extends and incorporates
the refinement technique from the Portfolio [46] tool. The
initial step involves retrieving search results from the Portfolio
tool for a given query. Subsequently, feedback from users is
collected for each fragment in the result list, leading to the
expansion of the query representation. The list of results is then
re-ranked based on the similarity score between the original
query and the expanded queries. While the research utilizes
feedback information similar to ours, it focuses on solving the
code fragment search problem and notably does not employ
the LTR technique. In the field of API recommendation, Thung
et al. [47] present WebAPIRec, an automated approach that
addresses web API recommendation as a personalized ranking
task. This approach utilizes historical data on API usage to
transform the recommendation process. By training a model,
WebAPIRec aims to minimize ordering errors in the suggested
ranking of Web APIs. However, feedback information is also
neglected in their approach. Liu et al. [48] propose RecRank,
a discriminative approach that focuses on improving the top-
1 recommendation within the APIREC framework [49]. Re-
cRank utilizes usage path-based features to accurately rank
the recommendation list generated by APIREC, thereby en-
hancing the overall recommendation quality. On the contrary,
our approach remains agnostic to any specific component
recommendation method. Furthermore, RecRank also lacks
consideration for feedback information.

7. CONCLUSION

In this paper, we introduce EHOPE, a novel framework
for improving the performance of code completion systems.
EHOPE takes a code segment and an existing code token
recommendation as input, and builds a new code completion
model by leveraging the user’s selection history as feed-
back information and utilizing LSTM and BERT. As more
feedback information is incorporated, EHOPE outperforms
baseline code completers and achieves increasingly better code
completion results. Our experiments demonstrate that EHOPE
significantly enhances the effectiveness of state-of-the-art code
completers. In future work, we plan to develop a full-fledged
tool based on EHOPE as a plugin for mainstream IDEs,
with the aim of providing better support for programming.
Moreover, the approach presented in this paper has broader
applicability and we plan to extend it to other recommendation
scenarios in software engineering.
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