
Scope-based Compiler Differential Testing

Rong Qu1,3, Jiangang Huang1,2, Long Zhang1,∗, Tianlu Qiao4, Jian Zhang1,3,∗
1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

2Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
3University of Chinese Academy of Sciences, Beijing, China

4School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, China
qurong@ios.ac.cn, huangjiangang22@mails.ucas.ac.cn, zlong@ios.ac.cn, qiaotianlu@bupt.edu.cn, zj@ios.ac.cn

*corresponding authors

Abstract—Compilers are among the most critical components
in the software development. Obviously, their correctness is
very important, yet they are among the most complex software
systems. The traditional grammar-based compiler random test-
ing measures have two shortcomings. Firstly, the technique
generating test programs for one programming language is
difficult to migrate to another. The second one is that tradi-
tional grammar-based technique haven’t optimized the relation
of identifier definition and use yet, causing the undefined
identifiers problems or the low quality of the generated test
programs. To address these problems, we propose a scope-
based compiler testing method ScopeGen in this paper. To
generate runnable and diverse test programs, ScopeGen sup-
ports two types of identifier strategies based on the scope
information, one is scope distance based and the other is
global optimization based. These identifier strategies guide the
definition and use of identifiers and balance the distribution of
identifiers in different scopes. Benefiting from the public gram-
mar dataset Grammar-v4, ScopeGen can be easily migrated
to various programming languages. We implement a program
generator and generate grammatically correct and runnable test
programs for C, Java and Python. Next, we conduct differential
testing to identify various bugs in compilers by comparing the
output of different compilers. The experimental evaluation of 9
compilers (gcc, clang, icc, icx, Ark, Javac, CPython, Pypy and
Codon) shows that ScopeGen outperforms the two state-of-the-
art methods (i.e., Csmith and YARPGen) improving more than
69% in inconsistency finding ability. By running ScopeGen we
have reported 114 bugs for 4 compilers, 84 of which were
confirmed.

Keywords–compiler testing, differential testing, random test-
ing, code generation, program generation, grammar-based.

1. INTRODUCTION

Compilers are used by every programmer almost every day
because they are the core components in the software de-
velopment tool chain. Compiler random testing is one of
the commonly used techniques to test the functionality and
safety of compilers. The random generator produces gram-
matically correct test cases to test the deep parts of the
compiler. Random testing technology detects software defects
by generating a large number of test inputs and monitoring
the execution status of the target program. One challenge

faced by compiler random testing is to generate grammatically
correct test cases. The researches [1][2][3][4] showed that
software defects in compilers mainly exist in the middle-end
and back-end. To carry out back-end testing (such as code
optimization and code generation components), early research
work generated test cases based on the grammar specification
of the target language. For example, the test program randomly
generated by Csmith [5] based on a given C grammar can
easily pass the compiler’s parsing stage. Livinski [6] developed
another random C/C++ program generator YARPGen and it
is specifically designed to trigger compiler optimization bugs
and is intended for compiler testing. However, these two
works pointed out that providing the grammar specification
of the target language is a time-consuming and laborious
work. In addition, it is difficult to migrate to new target
languages and compilers. In recent years, some techniques and
methods generate test programs from context-free grammars
[7][8][9]. They are easier to migrate to new target languages
and compilers. However, the methods of this type always have
trouble in handling the undefined identifiers problem.

In this paper, we propose a method ScopeGen to gener-
ate grammatically correct and runnable programs based on
context-free grammars. In order to solve the problem of
undefined identifiers, we propose several identifier selection
strategies based on the scope information of the generated
program. These strategies can also balance the use of identi-
fiers and improve the diversity of the relations among iden-
tifiers and scopes in the generated programs. In program
generation, we regard the scope information as tree structure.
The following two types of strategies can be used to select
available identifiers. The first type is based on the distance
between the scope where the identifier is defined and used.
There are four strategies in this type: (1) new identifier (NIS);
(2) randomly identifier (RIS); (3) closest identifier (CIS); (4)
farthest identifier (FIS). The second type is based on the global
optimization about the distribution of identifier usage on all the
scopes. There are two strategies in this type: (1) scope uniform
identifier (SUIS); (2) strength decrease identifier (SDIS).

We use the above strategies to solve the problem of un-
defined identifiers in generating test programs, and optimize
the use of identifiers based on scope information. In order to
compare the effects of test programs under different identifier
strategies in compiler testing, we conduct differential test
experiments on five C compilers. Experiments show that

1360

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

2693-9177/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS60937.2023.00043

under the same number of test programs, the SDIS and CIS
outperform other strategies in finding more inconsistencies of
compilers. We develop a program generator for generating test
programs based on context-free grammars, and implement the
above methods in it. Contributions of this article are as follows:

1) We propose ScopeGen, a testing framework aiming to detect
bugs in compilers.

2) We design several identifier selection strategies based on
scope tree to solve the undefined identifier problem.

3) We implement a general program generator for Scope-
Gen and generate runnable programs for C, Java and Python.
The rest of this article is organized as follows. Section 2

presents the background of grammar based program generation
and gives the motivation of our study. Section 3 introduces
ScopeGen in detail. Experimental evaluation are presented
in Section 4. The threats, and related work are described in
Sections 5 and 6. Finally, Section 7 concludes this article.

2. BACKGROUND

In this section, we will introduce the grammar format in
Grammar-v4 [10] firstly. Secondly, we will illustrate how to
solve the deep recursion problem in the grammar.

2.1 Grammar

Grammar is the description of a language. Grammar-v4
[10] contains hundreds of grammars of different programming
languages. The definition of a rule(non-terminal) is similar
to the EBNF (Extended Backus-Naur Form) in compilation
theory, including its name, a separator colon, a rule body
and an ending semicolon. For example, the following rules
describe the syntax of assignment statements in C language.
It means that an assignment statement is composed of an id,
an equal sign, an expression and a semicolon.

Example 1: Assignment start : id ’= ’ expr ‘;’ ;
The definition of a token(terminal) is similar to that of a

rule. It is comprised of a token name, a separator colon, a token
body and an ending semicolon. For instance, the following
token definition represents a decimal integer. It means that the
first digit of a number is between 1 and 9, followed by 0 or
more digits between 0 and 9.

Example 2: NUM : (‘1’. . . ’9’)(‘0’. . . ’9’)* ;

2.2 Deep Recursion Exploration

Some production rules in the grammar may form infinite
loops, which causes deeper recursion problem in program
generation. For example, the grammar of type in Java

language is described by the rules in Example 3. We can
find that the first four rules form a recursion in generating
Java programs from top to bottom. When we try to generate
the rule typeType randomly, this recursion may cause endless
generation problem. In order to avoid this problem, we explore
all the nodes(rules) in a recursion and try to find the paths to
break out of the recursion. As described in Example 3, the
rule typeType has two replacements classOrInterfaceType and
primitiveType. If we choose classOrInterfaceType to replace
typeType, the generation will fall into the recursion. If we
choose primitiveType, it will get out of the recursion. Note that
there should be at least one path to break out the recursion of
each rule, or the grammar is incorrect or invalid.

2.3 Motivation

In this section, we first present an example to illustrate
potential problems in C compiler according to different iden-
tifier selection strategies. Then, we conduct a quantitative
study of historical compiler bugs to show the prevalence and
importance of those problems.

Figure 1 shows two C programs generated using NIS and
FIS identifier strategies of our method. These two programs
are structurally identical from line 3 to 5. The output of the
program in Figure 1(a) is 0 after being compiled and executed
on different C compilers. But the C program in Figure 1(b)
outputs 1 under gcc and 0 under clang. The two programs
are same in grammatical structure but differ in the use of
identifiers. NIS always creates a new identifier and uses it for
each position that needs to use an identifier, while FIS usually
selects the identifier from the farther scopes. We find that
the programs with the same grammatical structures may also
perform differently in compiler testing. It may be necessary
to design strategies to optimize the use of identifiers.

Figure 1. Output differently under gcc and clang.

To further understand the importance of identifier usage
and motivate our research, we conduct a quantitative study of
compiler history bugs in this section. Specifically, we collect
bug reports from the gcc bug repository. Here, we only collect
gcc bug reports because gcc has a long history of development
and has a clear keyword mechanism to show bug types. Over
the 36560 bug reports collected, 2106 (5.8%) of them belong
to C-related components. Next, we categorize bugs based
on keywords. The top 4 categories of all bugs of C-related
components in gcc are ice-on-valid-code, missed-optimization,

2361

diagnostic, and wrong-code. In order to investigate how many
of the top 4 categories of bugs are indeed related to the
identifier usage, rather than other bugs of the compiler, we
perform a small-scale analysis of bugs in these 4 categories.
Specifically, we randomly select 100 fixed bugs of each type.
Then, we manually check whether the program fragments
corresponding to each of the selected 400 bugs contain the
definition and use of identifiers. Due to our limited knowledge,
we count the bugs that the program segment consisting of
definition and use of identifiers as positive samples. Even so,
the results in Figure 2 show that 53%, 62%, 43%, and 46%
of 100 involved bugs are related to the definition and use
of identifiers respectively. Therefore, more advanced identifier
selection strategies are needed to help compiler testing.

Figure 2. The percentage of bugs related to identifiers in GCC.

Summary: Due to the importance of ensuring compiler
reliability and the prevalence of bugs related to the definition
and use of identifiers in compilers, we design several scope-
based identifier selection strategies to generate test programs
for compiler testing. Specifically, we employ a grammar-based
random program generation method to generate diverse test
programs. Then, we preserve the affiliation between the scope
of the program and the identifier, and use different selection
strategies of identifiers to control the use of identifiers in the
generated programs.

Figure 3. ScopeGen Framework.

3. SCOPEGEN

Figure 3 shows the framework of ScopeGen. It can be seen
that the program generation part takes the grammar file as in-

put and outputs programs that satisfy the grammar. After using
these programs to conduct differential testing on compilers, a
series of bug reports can be produced. Specifically, we process
the grammar file before generating programs automatically.
The main task of pre-processing is marking the production
rules related to scopes and identifiers.

In the process of randomly generating programs based on
grammar, if a new scope needs to be created, we will update
the scope tree by adding a scope node to it. If we need to
create a new identifier, we will also update the scope tree
by associating this identifier with its scope. If we need to
use an existing identifier, we will use scope-based or global
optimization based identifier strategies to increase the diversity
and effectiveness of test programs. We recognize the bugs from
the output inconsistencies.

3.1 Scope Tree Construction

The main task of scope tree(ST) construction is to maintain
and update the information in the ST . It mainly includes two
parts, as shown in Figure 3, one is updating of the ST structure
in generating new scopes, and the other is updating the
identifier information on each scope node of ST in generating
new identifiers. Before introducing the construction of scope
trees, we will introduce the scope in programming at first.

Figure 4. Example of scope tree.

Scope is a concept in programming. Generally speaking, the
identifiers used in a program code are not always valid(usable).
The code scope that limits the availability of an identifier
is the scope of it. The use of scope improves the locality
of program logic, enhances program reliability, and reduces
identifier name conflicts.

Figure 4 shows an example of a C program p3.c and
its scope structure. There are totally 6 scopes in p3.c, root,
function ‘fun’, function ‘main’, ‘while’ block, ‘if’ block and
‘else’ block. In the scope tree of Figure 4, we also mark the
identifiers defined within each scope. For example, the variable
d is defined in the first line of the program, so we add an
identifier record d on the root scope node. The variables sum,
a, and b are defined in line 10 of the program, so we add
three identifier records sum, a, and b on the main function.

3362

In order to solve the problem of undefined identifiers in
randomly generating programs, the scope information in the
program must be taken into account. The existing grammar-
based program generation methods haven’t supported a general
framework for identifier strategies based on scope yet, which
causes it difficult to migrate the method of generating test
programs based on one language to another. Therefore, we
design a general framework to select identifier based on
scope tree to solve the undefined identifier problem. The
main content of constructing and updating scope trees will
be introduced below.

Each statement belongs to one scope in programs. The
correctness of the definition and use in statement can be guar-
anteed by the scope information. The entire program can be
seen as the root scope of ST . The scopes arranged sequentially
in the program are sibling nodes in ST , and the nested scopes
are parent-child nodes in ST . Assume that the scope of the
current production rule R we want to generate is S, which can
be represented as Scope(R) = S. There are n children scopes
of S, Children(S) = {S1, S2, . . . Si, . . . Sn}, 1 ≤ i ≤ n.
Assume that R will create a new scope S′ (such as function,
block, condition or loop statement, etc.), then establish a
new connection of parent-child between S and S′. Update
Children(S) = {S1, S2, ...Si, ...Sn, S

′}, 1 ≤ i ≤ n. Then
switch the current scope position from S to S′. Update the
current scope position from S′ to S when the generation of
R is finished.

Assume the current production rule R will create a new
identifier, and the content corresponding to the identifier may
be the type (int, float, char, bool, array, pointer, etc.), the
category (variable, function, etc.) and so on. In order to per-
form type checking to avoid generating invalid test programs,
associate the information of the new identifier with current
scope node S. That is, each scope node S contains parent-
child relation information and the related information of all
identifiers defined in S. We give three examples of associating
the identifiers with the scope they belong to in creating new
identifiers in Examples 4-6. We first define a variable a of
int type in scope ‘S’. So we add an identifier record {name:
“a”, type:int, category:var, scope: S} to the identifier table of
the generated program. For the identifier of array, the length
information is also saved in the identifier record.

Figure 5. Example of new identifier definition.

3.2 Identifier Selection

Assume that the current rule R needs to use an identifier
IDneed of type Typeneed. To increase the diversity of iden-
tifier usage in generated programs, and solve the undefined
identifier problems in grammar based measures, we propose
two types of identifier selection strategies. One is based on
scope distance and the other is based on global optimization.
We will introduce them in the next two sections respectively.

3.2.1 Strategies Based on Scope Distance

In most programming languages, an identifier defined in
one scope can be used in all the children scopes. To select an
identifier defined in ancestor scopes as IDneed, and explore
the promotion effect of using identifiers in different distance
scopes on the diversity of generated programs, we propose four
strategies as shown in Figure 6. They are the new identifier
strategy (NIS), the closest identifier strategy (CIS), the farthest
identifier strategy (FIS) and the random identifier strategy
(RIS). To illustrate these strategies, we need to define the
following concepts:

Figure 6. Identifier strategies based on scope distance.

parent. For scopes Sa and Sb, if Sb is directly defined in
Sa, we call Sa the parent of Sb, that is parent(Sb) = Sa,
write as Sa > Sb.

path. For scopes Sa and Sb, the path from Sa to Sb

is defined as path(Sa, Sb) = {Sa, S1, S2, . . . Sj , . . . Sm, Sb},
where Sa > S1 > S2 > . . . Sj > . . . Sm > Sb, 0 ≤ j ≤ m.

ancestor. For scopes Sa and Sb, if Sb is indirectly or
directly defined in Sa, we call Sa the ancestor of Sb, there
is a path path(Sa, Sb) from scope Sa to Sb, the relation of
Sa and Sb can be expressed as Sa >> Sb.

ancestors. For scope Sa, the set of all its ancestors can be
expressed as ancestors(Sa).

distance. The distance between scopes Sa and Sb is defined
as distance(Sa, Sb) = |path(Sa, Sb)|. The distance between
Sa and Sb is the path length from Sa to Sb. It is noted that
the distance between a scope and itself is the smallest, i.e.
0. The distance from the parent to the child is 1, that is, if
Sa > Sb, distance(Sa, Sb) = 1. The distance from the child
to the parent is infinite, if Sa > Sb, distance(Sb, Sa) = +∞.

4363

(1) NIS The relation among identifiers is the weakest by
using the new identifier strategy (NIS) among all four scope
distance based strategies. It means that when we need to use an
identifier of type Typeneed in scope S, we create a new iden-
tifier according to the grammar rules and insert the definition
statement of this variable into S or the ancestors of S. Specif-
ically, as shown in Figure 6(a), for the current scope S, firstly
construct a scope set V alidScopes(S) = ancestors(S) ∪ S
in which the new identifier IDnew can be defined in. From
Figure 6(a), we can see that V alidScopes(S) = {root, P, S}.
After that, we randomly select a scope from V alidScopes(S)
and associate IDnew with this selected scope.

(2) CIS The closest identifier strategy (CIS) will make the
relation among the identifiers that are close to each other
stronger than NIS. CIS may improve the internal correlation
of each scope in the program relatively. In this case, the
definition and use of identifiers are more cohesive. When an
identifier of a certain type Typeneed needs to be used, an
identifier defined in Typeneed type is always randomly taken
from the scope closest to the current scope S. That is, the
scope with the minimum distance to S. In fact, the identifiers
defined in S will be given higher priority in CIS. As shown in
Figure 6(b), the closest identifier is selected according to the
following steps. Firstly, get the identifier set of type Typeneed
as Identifiers(S, Typeneed) from the current scope node S.
If the identifier set is not empty, then an identifier is randomly
selected from this set as the result of IDneed. If the set of
identifiers is empty, we take out the parent in turn, and then
take out the set of identifiers available in the parent until we
find out a set of identifiers that is not empty. In Figure 6(b),
the nodes of scope are traversed sequentially from bottom S
to top root. If there are still no available identifiers, we will
create a new identifier and use it which is described in NIS.

(3) FIS If we use the farthest identifier strategy (FIS), the
relation among identifiers will be stronger than CIS, and the
scopes in the program may be strongly correlated with each
other. In this case, the definition and use of identifiers in
different scopes are more coupled. When an identifier of type
Typeneed needs to be used, always get the identifiers of type
Typeneed randomly from the scope farthest from the current
scope. At this time, the variables in each unrelated scope can
often be more related through the variables defined in ancestor
scopes. Two scopes are unrelated to each other means that
there is no parent-child or ancestor-descendant relationship
between these two scopes, such as the relationship between
sibling nodes in the scope tree. In Figure 6(c), the scopes
P and Q are unrelated, but the statements in P and Q may
use the same variables defined in scope root. In this way
FIS enhances the relation of variables defined in unrelated
scopes. As shown in Figure 6(c), FIS first takes out all the
identifiers of type Typeneed from the root node as a set
Identifiers(root, Typeneed). If the set is not empty, it will
randomly select an identifier from this set as the identifier
selection result. If the set of identifiers is empty, we start at the
root node and follow the path(root, S) from top to bottom to
take out the identifiers of type Typeneed in each scope nodes

in turn until the set of identifiers Identifiers is not empty,
and then randomly select an identifier from this set as the
result. In Figure 6(c), if we try to use an identifier defined
before in scope S, the nodes are traversed sequentially from
top to bottom: root, P and S. If there is still no available
identifiers, a new identifier will be created by NIS.

(4) RIS Random identifier strategy (RIS) may enrich the
diversity of the relation between identifiers in different scopes.
When an identifier of type Typeneed needs to be used, an
identifier of Typeneed is always randomly taken from current
scope or the ancestors of current scope. It is possible to get
the identifier from both the closer scopes, and the farther
scopes. As shown in Figure 6(d), RIS selects the identifier
according to the following steps. Firstly, traverse from the
current scope S to the root on the scope tree ST to get all the
identifiers of type Typeneed as a set Identifiers, In Figure
6(d), the set Identifiers = Identifiers(S, Typeneed) ∪
Identifiers(P, Typeneed) ∪ Identifiers(root, Typeneed).
And then RIS randomly takes an identifier from Identifiers
as the result of the identifier selection. However, grammar-
based program generation is incremental. So that the earliest
defined identifiers have more chances to be selected, which
causes the imbalance of the use of identifiers. Therefore, the
diversity of identifier usage in RIS can be further improved.

3.2.2 Strategies Based on Global Optimization

The strategies based on scope distance such as CIS and
FIS can control the diversity of generated test programs than
random strategy RIS, but they don’t take the usage of various
identifiers within different scopes into account. To illustrate
this situation, take the C program in Figure 7 as an example.
In line 4 of these 2 programs, we need to generate an
addition statement that uses three identifiers. If we use an
identifier selection strategy based on scope distance, we may
generate the program as p4.c in Figure 7(a), where the addition
statement is a=a+a. This is because the identifiers a, b and
c defined in line 2 are within the same scope, i.e. the ‘main
function’ scope. The distance between the ‘main function’
scope and the ‘while’ scope is 1. Then for the strategies based
on scope distance, the identifiers a, b and c will be weighted
equally. Therefore, it is possible for the three identifiers in the
addition operation statement to be selected as the same under
CIS, FIS and RIS, that is, in line 4 of Figure 7(a), a=a+a.

Figure 7. Motivation of global optimization based strategies.

5364

For the program p5.c in Figure 7(b), we use identifiers a,
b and c in line 4, so that each identifier is used in the while
scope. We believe that this testing program is more diverse on
the aspect of identifier use than the program in Figure 7 (a).
In order to maximize the relation strength between identifiers
and scopes in a program, we propose two global optimization
strategies to select available identifiers. The first is a strategy
of uniform scope, and the second is of decreasing strength.

(1) SUIS The scope uniform identifier strategy (SUIS)
expects that in the generated program, the use of each identifier
can be evenly distributed on different scopes. In the test pro-
gram generation, we maintain an identifier scope uniformity
coefficient (ISUC) for each program defined as follows:

ISUC =
∑n

i=1(
varUsedi

scopeNumi
− varMinT imei) (1)

where n represents the number of identifiers in the current
program, varUsedi represents the number of times the i-
th identifier vari is used in the generated program, and its
definition is as follows:

varUsedi =

scopeNumi∑
j=1

varUsedScopeij (2)

where scopeNumi indicates the number of scopes that can use
the identifier vari, that is, the number of scopes that define the
identifier vari and all its descendant scopes. varUsedScopeij
indicates the number of times that vari is used in the j-th
scope. varMinT imei represents the minimum use times of
vari in all scopeNumi scopes, and its definition is as follows:

varMinT imei = min
j

(varUsedScopeij) (3)

In order to make the identifiers in the generated program
evenly distributed in the scopes where they can be used, when
an identifier needs to be used, we select the identifier by
minimizing the value of the uniformity coefficient ISUC of
the program, that is, the optimization goal is min(ISUC).

(2) SDIS The strength decrease identifier strategy (SDIS)
expects that we can always select the identifier maximizing the
strength of the identifier and scope. We define the identifier
scope strength coefficient as ISSC, and the definition of this
coefficient is as follows:

ISSC =
∑n

i=1

∑scopeNumi

j=1 (1 + 1
2 + 1

4 + ...+ 1
2tj−1) (4)

where n, i, scopeNumi and j share the same meanings as
described before, tj represents the number of times the i-th
identifier is used in its j-th scope. When an identifier needs
to be used, we select the optimal identifier by maximizing the
value of the strength coefficient ISSC of the program. If an
identifier is used too many times in the same scope, the incre-
ment it can bring to the optimization function will decrease
exponentially. That is, the optimization goal is max(ISSC).

4. EVALUATION

In this section, we evaluate the proposed method and we
mainly focus on the following three research questions:

RQ1: Can our method find more compiler inconsistencies
than state-of-the-art methods?

RQ2: Which of the identifier selection strategies we pro-
posed can find more compiler inconsistencies?

RQ3: How well does our proposed program generation
method ScopeGen perform in actual compiler testing?

RQ1 evaluates the bug finding ability of ScopeGen com-
pared to state-of-the-art methods (i.e., Csmith and YARPGen).
In particular, we tested compilers using ScopeGen, Csmith
and YARPGen to generate the same number of test cases,
comparing both the quality of the generated programs and the
number of inconsistencies in compiler behavior detected. RQ2
investigates the impact of the six proposed identifier selection
strategies on the bug-finding ability of ScopeGen. We used
these strategies to generate the same number of C programs
for differential testing of the compiler, and analyzed the con-
tribution of different strategies to ScopeGen by comparing the
number of compiler inconsistencies detected. RQ3 evaluates
the ability of ScopeGen to detect compiler bugs in practice.
Specifically, we implemented our method ScopeGen for three
languages C, Java, and Python, and used the test programs
generated by ScopeGen to conduct differential testing on
the compilers. And we evaluated the bug finding ability of
ScopeGen from the number of bugs submitted and confirmed.

4.1 Experimental Setup

Our evaluation is performed on the linux operating system
Ubuntu 20.04.5 LTS equipped with an AMD Ryzen 9 5950X
processor (16 cores and 32 threads). We followed the compiler
testing research [5][6], testing 5 C compilers (gcc, clang, icc,
icx, Ark C [11]), 2 Java compilers (javac and Ark Java [11]),
and 3 Python compilers (CPython, Pypy, Codon [12]).

For the implementation of the program generator ScopeGen,
we take C, Java, Python grammar files in Grammar-v4 [10]
as the input, which is a collection of various ANTLR [13]
grammars. Grammar-v4 is publicly available, contributed by
developers around the world. To generate runnable programs,
we manually deleted the complex features, and marked the
special rules in the grammar, such as function rules, scope-
related rules, identifier rules, etc. In order to prevent program
generation from falling into the deeper recursion of grammar
rules, we pre-processed all the deeper recursions in the gram-
mar automatically by the strategies mentioned in Section 2.2.
After that, we generated test programs by replacing the rules
with their replacements randomly. The length of programs
generated by ScopeGen is configurable. In order to ensure the
dynamic correctness of the program, we solved some problems
such as division by zero, array index out of bounds, null
pointer, infinite loop, and expression type checking.

To illustrate the bug-finding capability of ScopeGen, we
compare it with two state-of-the-art methods, namely Csmith
[5] and YARPGen [6]. Csmith is a widely used compiler
testing tool that randomly generates valid C programs to help

6365

TABLE I
COMPARISON OF GENERATING 1000 C PROGRAMS

Total Time Average lines Invalid Programs

Csmith 6m42s 1363 lines 12%
YARPGen 3m8s 1357 lines 0%
ScopeGen 11s 38 lines 0%

TABLE II
COMPARISON OF COMPILING 1000 C PROGRAMS

Executable File Size(MB) Compilation Time(s)

ScopeGen Csmith YARPGen ScopeGen Csmith YARPGen

clang14O2 15.4 29.4 46.3 17.6 35.3 169.3
clang14 15.5 71.3 56.6 18.4 33.1 47.7
clang15O2 15.3 29.2 45.7 34.8 184.0 1545.0
clang15 15.4 71.2 56.5 27.8 94.7 62.8
gcc9O2 15.4 36.0 36.8 15.4 38.2 110.4
gcc9 15.4 119.0 51.8 14.8 33.5 27.0
gcc11O2 15.4 36.5 35.9 16.0 40.1 114.7
gcc11 15.4 119.7 51.7 15.0 33.0 33.4
iccO2 28.6 83.9 38.4 6.4 18.8 72.7
icc 28.5 72.9 58.5 6.2 8.1 18.6
icxO2 15.4 44.2 187.1 22.8 47.2 363.8
icx 15.4 61.1 54.8 18.6 30.6 46.9
Average 17.6 69.6 64.6 19.4 52.3 217.7

find bugs in the compiler. The programs generated by Csmith
won’t include 52 unspecified behaviors and 191 undefined
behaviors in C99. The idea of using YARPGen to verify the
compiler is the same as that of Csmith, which is carried out by
differential testing. But YARPGen can support C++ language.

We tested compilers by using the optimization option -O2 or
not on two newer versions of gcc, gcc 11.3.0 and gcc 9.5.0. For
clang, we tested clang 15.0.7 and clang 14.0.0. In addition to
these two commonly-used compilers, we also tested the latest
version of icc (Intel C/C++ Compiler Classic) and the latest
version of icx (Intel oneAPI DPC++/C++ Compiler 2023.0.0
). In addition, we also tested javac-17.0.6, Ark compiler 1.0.0
(C and Java), CPython-3.8.10, CPython-3.9.16, Pypy-3.9 and
Codon-0.15.5 [12].

4.2 Answer to RQ1

Motivation: This RQ aims to investigate the inconsistency-
finding capability of ScopeGen compared with two state-of-
the-art approaches, i.e., Csmith and YARPGen.

Approach: To evaluate RQ1, we ran ScopeGen, Csmith and
YARPGen to generate the same number of C programs, using
the RIS strategy in ScopeGen. Table I is the basic information
of generating the same number of 1000 C programs. Among
them, the invalid Programs refers to the proportion of programs
that will cause timeout problem on all the compilers. Table
II lists the program compilation time generated by different
methods and the size comparison data of executable files.

Results: From Table I we find that ScopeGen generated the
same number of test programs in much less time, 11 seconds,
while Csmith needs 6 minutes and 42 seconds, and YARPGen
needs 3 minutes and 8 seconds. Among 1000 programs, 120 of
Csmith are invalid and all of the programs of ScopeGen and
YARPGen are valid. It indicates that ScopeGen can generate

Figure 8. Csmith and ScopeGen (RIS).

Figure 9. Average inconsistency.

smaller and useful test programs in a shorter time.
In Table II we find that all the “Executable File Size” of

ScopeGen under different compilers are smaller than Csmith
and YARPGen. Meanwhile, ScopeGen needs shorter time in
compilation than Csmith and YARPGen. The first reason may
be that the length of test programs of Csmith and YARPGen
are much longer (1363 and 1357 lines) than ScopeGen (38
lines) according to Table I. The second reason may be that
the programs generated by Csmith must be compiled with
other 17 files including header files and C files provided by
Csmith. In contrast, the programs generated by ScopeGen can
be compiled and executed independently. All the “Compilation
Time” of ScopeGen are less than those of Csmith and YARP-
Gen. The experimental results mentioned above illustrate that
ScopeGen have more advantages in generating test programs.

In order to compare the performance of different methods
in inconsistency-finding, we generate 10,000 C programs by
ScopeGen (RIS), Csmith and YARPGen respectively. And
then we conduct a differential testing on 12 compilers and
the results of each two compilers are compared. We list the
differential testing results of ScopeGen (RIS) in the top right
corner of Figure 8. The results of Csmith are in the bottom
left corner. On 10,000 programs, there are only 1 compilation
error and 9 run-time errors of YARPGen under icc compiler
with O2 option. So we don’t list YARPGen in Figure 8.

By comparing the experimental results in Figure 8, we find

7366

that the number of inconsistencies detected by ScopeGen (RIS)
is much more than that of Csmith. Specifically, Figure 9 shows
the average number of inconsistencies between pairwise com-
pilers over 10,000 programs is 177.8 under ScopeGen (RIS),
and 22.7 under Csmith. On the one hand, this indicates that
our method is effective in inconsistency-finding. On the other
hand, the reason may be that Csmith and YARPGen prevent
unspecified behaviors while ScopeGen (RIS) prevents only
part of unspecified behaviors.

Conclusion: The results demonstrate that Scope-
Gen (RIS) has a better inconsistency-finding capability
compared with Csmith and YARPGen, achieving an
improvement of over 69% in finding compiler incon-
sistencies.

4.3 Answer to RQ2
Motivation: This RQ evaluates the impact of the proposed

six identifier selection strategies NIS, CIS, FIS, RIS, SUIS and
SDIS on the inconsistency-finding capability of ScopeGen.

Approach: We tested the same compiler on the same number
of test cases as RQ1. Then we compared the inconsistency-
finding capabilities of different identifier selection strategies
in terms of the number of inconsistencies detected.

Figure 10. New identifier strategy NIS.

Results: Figures 10-12 show the number of inconsistencies
detected by 10,000 C programs using NIS, CIS, FIS, SUIS,
and SDIS strategies. The results about RIS have been shown
previously. The average number of inconsistencies for each
strategy is shown in Figure 9 and we can observe that the
results of the NIS strategy is significantly worse than other
strategies. This might because in NIS, a new identifier is
always generated for each production rule that needs an
identifier, the definition and usage relation between identifiers
in different scopes are relatively lower. CIS and FIS are based
on the scope distance. Figure 11 shows that the number of
compiler inconsistencies detected by CIS is relatively more
than that of FIS. The average numbers pf inconsistencies in
Figure 9 are 255.3 and 129.9 respectively. The reason may be

Figure 11. Scope distance based strategies CIS and FIS.

Figure 12. Global optimization strategies SUIS and SDIS.

that CIS prefers to select identifiers in the nearest scope, which
means that identifiers defined in each layer of scopes have a
chance to be used in the next layer of scopes, while FIS prefers
to use the identifiers in the outer layer of scopes, resulting
in the identifiers defined in inner scopes have no chances
to be used. This will reduce the diversity of the relations of
identifier in definition and usage. It is worth noting that the
average number of inconsistencies in RIS is 177.8, which is
less than CIS but more than FIS. The reason may be that in
the process of incremental program generation under RIS, the
earliest defined identifiers have more chances to be selected.
Therefore, the diversity of RIS in the definition and use of
identifiers is between FIS and CIS. Both SUIS and SDIS are
based on global optimization. From the results in Figure 12,
we find that SDIS is better than SUIS. The average numbers of
inconsistencies about SDIS and SUIS in Figure 9 are 246.7 and
160.8 respectively and SDIS is about 54% better than SUIS.
This may because that SDIS uses an exponential decline when
an identifier is used too many times in the same scope, while

8367

TABLE III
NUMBER OF REPORTED BUGS BY SCOPEGEN

Compilers Submitted Confirmed Pending Rejected

icx-O2 2 0 2 0
C icx 1 0 1 0

Ark-C 97 75 22 0
Java Ark-Java 3 3 0 0

Pypy-3 1 1 0 0
Python Codon 10 5 0 5
Total 114 84 25 5

SUIS is a linear decline. SDIS is more effective in balancing
the identifiers usage in different scopes than SUIS, resulting
in more diverse test programs. From the comparison in Figure
9, it is easy to find that in terms of the inconsistency finding
capability, CIS>SDIS>RIS>SUIS>FIS>NIS.

Conclusion: The identifier selection strategies can ef-
fectively help ScopeGen detect more inconsistencies in
C compilers. Specifically, the CIS and SDIS strategies
in ScopeGen can detect more inconsistencies than the
other strategies, especially more than 43% and 38%
improvements of the random strategy RIS respectively.

4.4 Answer to RQ3

Motivation: Detecting real bugs in compilers is difficult.
This RQ evaluates the actual bug-finding ability of Scope-
Gen in C, Java and Python compilers.

Approach: We tested 4 types of C compilers (gcc, clang,
icc, icx) mentioned above. We also tested the newer version
of Javac, the Ark compiler, and 3 Python compilers CPython,
Pypy, and Codon.

Results: Specifically, Table III lists the number of bugs we
have submitted so far. Among them, 3 bugs were submitted
to icx-2023.0.0, which until now have not been addressed by
the developers. A total of 97 C bugs and 3 Java bugs were
submitted to Ark-1.0.0, of which a total of 75 C bugs were
confirmed, 3 Java bugs were all confirmed, and the other 22
C bugs reported have not been processed yet. 1 bug submitted
to Pypy-3.9 was confirmed. All 10 bugs submitted to Codon-
0.15.5 were addressed, 5 of which were confirmed and the
other 5 didn’t meet the grammar specification of Codon, which
supports a smaller grammar subset of Python and general
Python programs cannot be compiled by Codon.

Conclusion: ScopeGen is effective in detecting compiler
bugs in practice. It reported a total of 114 bugs on icx,
Ark Compiler, Pypy and Codon. Of these, developers
have confirmed 84 bugs.

5. THREATS TO VALIDITY

In this section we discuss the limitations of ScopeGen.
Firstly, we find that the test programs containing unspecified
and undefined behavior lead to a significantly higher number
of inconsistencies under clang-15 with O2 option. Secondly,
the length of programs generated by ScopeGen is configurable,
but we did not fully test the impact of different lengths of

programs on experimental results. Since longer program tends
to contain more complex behaviors, thus, having more po-
tential to trigger compiler bugs. Thirdly, ScopeGen randomly
generates a test program based on language grammar, and
then tests the compiler based on differential testing. We cut
down the grammar in order to produce valid and runnable
test programs, which prevents us from supporting all grammar
features in Grammar-V4 [10].

6. RELATED WORK

Compiler differential testing [14] is currently the main
method to ensure compiler quality [15][16]. Existing compiler
testing techniques can be classified into three categories,
namely Random Difference Testing (RDT), Different Opti-
mization Levels (DOL), and Equivalent Modulo Input (EMI)
[16][17]. RDT detects compiler errors by comparing the output
of different compilers with the same specification, while DOL
compares the results produced by the same compiler with
different optimization levels. Most RDT and DOL based tech-
niques [5][18][19][20][21][22][23][24], use randomly gener-
ated test programs to test the compiler. Csmith [5] and
YARPGen [6] are two widely used C program generators for
testing C compilers. However, Csmith and YARPGen only
target C and C++.

The idea of using grammars as test generation models has
several decades of history. As early as in the 1970s, Purdom
[7] experimented with testing parser programs with test cases
generated from context-free grammars. Kifetew [25] used a
stochastic context-free grammar in BNF format as a test
generation model. Unfortunately, their prototyping tools are
not available to the public. Dharma [9] allows users to define
grammar files and then generate programs according to the
given grammar. Grammarinator [8] is a random test program
generator that creates test programs based on grammars in
Grammar-v4 [10], but it doesn’t solve problems such as
undefined identifiers and deeper recursion. POLYGLOT [26]
is a generic fuzzing framework for exploring processors of
different programming languages, but it cannot generate test
programs with more diverse identifier relations.

Our research is also based on RDT. However, we focus
on generating test programs to test compilers using a scope
structure-based identifier selection strategy. Our approach is
easy to generate programs for different programming lan-
guages based on grammars in the Grammar-v4 [10] ensem-
ble. By marking the grammatical rules related to the scope,
symbol table, etc. in the grammars of different languages, it is
possible to generate valid and effective programs for different
languages for compiler testing.

7. CONCLUSION

In this paper, we propose a framework named ScopeGen to
generate test programs for compiler testing. ScopeGen ad-
dresses two challenges, generating runnable test programs
based on grammars, and obtaining test programs with diverse
definitions and usage relations based on scope information.
The experimental evaluation shows that ScopeGen detect

9368

over 69% more inconsistencies than the two state-of-the-art
methods Csmith and YARPGen on C compilers. We use
ScopeGen to generate C, Java, and Python test programs and
conduct differential testing. We submitted a total of 114 bugs
to icx, Ark, Pypy, and Codon compilers, of which 84 were
confirmed. Our method can identify many inconsistencies in
compiler behavior, but they may be related to the specification
of programming language and require further research.

ACKNOWLEDGMENT

We are grateful to Baoquan Cui, Mengze Hu, Jiwei Yan,
Junjie Chen, Jun Yan, Xutong Ma, Yu Zhang, and the anony-
mous reviewers for their helpful comments and suggestions.
This work is supported by the National Natural Science
Foundation of China (NSFC) under grant number 62132020.

REFERENCES

[1] C. Cummins, P. Petoumenos, and A. Murray, “Compiler
fuzzing through deep learning,” in 27th International
Symposium on Software Testing and Analysis, ISSTA.
ACM, 2018, pp. 95–105.

[2] M. Sassa and D. Sudosa, “Experience in testing compiler
optimizers using comparison checking,” in International
Conference on Software Engineering Research and Prac-
tice & Conference on Programming Languages and
Compilers, 2006, pp. 837–843.

[3] R. Morisset, P. Pawan, and F. Z. Nardelli, “Compiler test-
ing via a theory of sound optimisations in the C11/C++11
memory model,” in Conference on Programming Lan-
guage Design and Implementation, PLDI. ACM, 2013,
pp. 187–196.

[4] C. Béra, E. Miranda, and M. Denker, “Practical vali-
dation of bytecode to bytecode JIT compiler dynamic
deoptimization,” J. Object Technol., vol. 15, no. 2, pp.
1:1–26, 2016.

[5] X. Yang, Y. Chen, and E. Eide, “Finding and under-
standing bugs in C compilers,” in 32nd Conference
on Programming Language Design and Implementation,
PLDI. ACM, 2011, pp. 283–294.

[6] V. Livinskii, D. Babokin, and J. Regehr, “Random testing
for C and C++ compilers with YAPPGen,” Proc. ACM
Program. Lang., vol. 4, no. OOPSLA, pp. 196:1–196:25,
2020.

[7] P. Purdom, “A sentence generator for testing parsers,” in
BIT Numerical Mathematics, 1972, pp. 366–375.

[8] R. Hodován, Á. Kiss, and T. Gyimóthy, “Grammarinator:
a grammar-based open source fuzzer,” in 9th Interna-
tional Workshop on Automating TEST Case Design,
Selection, and Evaluation, FSE. ACM, 2018, pp. 45–48.

[9] Dharma. (2020). [Online]. Available: https://github.com/
MozillaSecurity/dharma.

[10] Grammar-v4. (2014). [Online]. Available: https://github.
com/antlr/grammars-v4

[11] OpenArkCompiler. (2020). [Online]. Available: https://
gitee.com/openarkcompiler/OpenArkCompiler.

[12] Codon. (2022). [Online]. Available: https://github.com
/exaloop/codon.

[13] Antlr. (2020). [Online]. Available: https://www.antlr.org.
[14] W. M. McKeeman, “Differential testing for software,”

Digit. Tech. J., vol. 10, no. 1, pp. 100–107, 1998.
[15] M. Marcozzi, Q. Tang, and A. F. Donaldson, “Compiler

fuzzing: how much does it matter?” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, pp. 155:1–155:29, 2019.

[16] J. Chen, J. Patra, and M. Pradel, “A survey of compiler
testing,” ACM Comput. Surv., vol. 53, no. 1, pp. 4:1–4:36,
2021.

[17] J. Chen, W. Hu, and D. Hao, “An empirical comparison
of compiler testing techniques,” in 38th International
Conference on Software Engineering,ICSE. ACM, 2016,
pp. 180–190.

[18] C. Lindig, “Random testing of C calling conventions,” in
Sixth International Workshop on Automated Debugging,
AADEBUG. ACM, 2005, pp. 3–12.

[19] H. Tu, H. Jiang, and Z. Zhou, “Detecting C++ compiler
front-end bugs via grammar mutation and differential
testing,” IEEE Trans. Reliab., vol. 72, no. 1, pp. 343–
357, 2023.

[20] Y. Yang, Y. Zhou, and H. Sun, “Hunting for bugs in code
coverage tools via randomized differential testing,” in
41st International Conference on Software Engineering,
ICSE. IEEE / ACM, 2019, pp. 488–498.

[21] G. Ofenbeck, T. Rompf, and M. Püschel, “Randir: differ-
ential testing for embedded compilers,” in 7th Symposium
on Scala. ACM, 2016, pp. 21–30.

[22] A. F. Donaldson, H. Evrard, and A. Lascu, “Automated
testing of graphics shader compilers,” Proc. ACM Pro-
gram. Lang., vol. 1, no. OOPSLA, pp. 93:1–93:29, 2017.

[23] V. Le, C. Sun, and Z. Su, “Randomized stress-testing
of link-time optimizers,” in International Symposium on
Software Testing and Analysis, ISSTA. ACM, 2015, pp.
327–337.

[24] M. A. Alipour, A. Groce, and R. Gopinath, “Generating
focused random tests using directed swarm testing,” in
25th International Symposium on Software Testing and
Analysis, ISSTA. ACM, 2016, pp. 70–81.

[25] F. M. Kifetew, R. Tiella, and P. Tonella, “Combining
stochastic grammars and genetic programming for cover-
age testing at the system level,” in Search-Based Software
Engineering - 6th International Symposium, vol. 8636.
Springer, 2014, pp. 138–152.

[26] Y. Chen, R. Zhong, and H. Hu, “One engine to fuzz ’em
all: Generic language processor testing with semantic
validation,” in IEEE Symposium on Security and Privacy
(SP), 2021, pp. 642–658.

10369

