
Aster: Encoding Data Augmentation Relations into Seed Test Suites for Robustness

Assessment and Fuzzing of Data-Augmented Deep Learning Models

Haipeng Wang1, Zhengyuan Wei1, Qilin Zhou1, Bo Jiang2, and W. K. Chan1,∗
1City University of Hong Kong, Hong Kong, China

2State Key Laboratory of Software Development Environment, School of Computer Science and Engineering,
Beihang University, Beijing, China

haipewang5-c@my.cityu.edu.hk, zywei4-c@my.cityu.edu.hk, qlzhou4-c@my.cityu.edu.hk, jiangbo@buaa.edu.cn,
wkchan@cityu.edu.hk

*corresponding author

Abstract—Data-augmented deep learning models are widely
used in real-world applications. However, many state-of-
the-art loss-based or coverage-based fuzzing techniques fail
to produce fuzzing samples for them from many seeds.
This paper proposes Aster, a novel technique to address
this problem to enhance their fuzzing effectiveness for deep
learning models trained with multi-sample data augmentation
methods. Aster formulates a novel reachability-based strategy
to encode the insights of every seed’s direct and indirect data
augmentation relation instances into the replacement seed of
that seed systematically. Our experiment shows that Aster
is highly effective. On average, loss-based and coverage-
based fuzzing techniques can generate 166% and 110% more
fuzzing samples and reduce 31% and 22% unsuccessful seeds,
respectively, after adopting the replacement seeds generated by
Aster to replace their original seeds. Their improved models
also become up to 55% and 40% on average more robust
against FGSM and PGD attacks in the experiment.

Keywords–seed generation; fuzzing; testing; neural network;
robustness; data augmentation

1. INTRODUCTION

Data augmentation (DA) expands and diversifies the
original training dataset by applying various transformations
to the training samples. This helps deep learning (DL) models
improve their generalization by introducing diverse examples
through augmented data. Indeed, data-augmented DL models
[1], [2] are widely used in many application scenarios,
including AI chatbot [3], [4], autonomous driving [5], [6],
disease diagnosis [7], [8], biometric recognition [9], [10].

For brevity, we classify DA methods into two board
categories: single-sample methods [11], [12] and multi-
sample methods [13]–[17]. Single-sample methods generate
augmented data from a sample by applying transformations
to the sample alone, such as flipping an image. On the other
hand, multi-sample methods (e.g., MixUp [13], CutMix [14])
pair a sample with other samples and combine them (e.g.,
linear interpolations) to create augmented data.

After data augmentation, the quality of the DL models
should be evaluated against robustness before deployment. For

instance, if a type of augmented data generalizes a DL model,
the assessment and testing of the DL model should include
the robustness of the same type of augmented data.

One line of research for model evaluation is to conduct
fuzzing [18], [19] on a DL model and check the extent of the
model to defend the attacks from the fuzzers (e.g., SENSEI
[20], Adapt [18], RobOT [19]) from producing fuzzing
samples. In general, fuzzing [18], [19] accepts a pool of seed
test cases (seeds for short) and evolves the seeds to generate
fuzzing samples from these seeds. Previous experiments (e.g.,
[19]) have shown that loss-based or coverage-based fuzzing
techniques [18]–[20] can effectively produce many quality
fuzzing samples when fuzzing DL models with augmented
data generated by single-sample DA methods. We wonder and
formulate the following research question:

Do existing loss-based or coverage-based fuzzers remain
effective when fuzzing DL models that are augmented with

data generated by multi-sample DA methods?

Nonetheless, we are unaware of any literature answering
this research question. The first contribution of this paper is
to present the first work to answer this research question.
Specifically, we conduct the first controlled experiment to
show that the current generation of (state-of-the-art) loss-
based or coverage-based fuzzing techniques [18], [19] are
ineffective in fuzzing DL models augmented by multi-sample
DA methods. Moreover, it is the first study to produce fuzzing
samples for directly assessing the model generalization by
multi-sample DA methods.

We have examined the designs of existing fuzzing
algorithms. Some fuzzers such as SENSEI [20] and
RobOT [19] focus on iteratively perturbing a sample based
on the previous states of the sample only (e.g., guided by
the loss value between different versions of a sample [19],
[20]). For instance, RobOT [19] mutates the sample iteratively
to generate a series of sample candidates until the loss of
the generated perturbed samples converges. If a generated
sample candidate is an adversarial example, RobOT outputs
the sample. Some other fuzzers (e.g., DLFuzz [21], Adapt [18]
and FilterFuzz [22]) use Neuron Coverage (NC) [23], [24],
activation values [25], or their variants [18] achieved by the

370

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

2693-9177/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS60937.2023.00044

samples under fuzzing as the guiding information to generate
adversarial examples. However, these metrics are formulated
independently of whether multi-sample DA methods couple
the given samples or their evolving versions in the training
process, making them incapable of assuring against the
robustness of the DA relation injected by the multi-sample
DA methods into the models under test (MUTs). Moreover,
suppose the fuzzing time budget to search around an individual
sample in a fuzzing campaign is limited (e.g., 5 to 10 seconds
in [18], [19]). In this case, in one scenario, a fuzzer may
fail to generate any fuzzing samples from a seed due to its
ineffectiveness in exploring the search space. We argue that
using their resulting sets of fuzzing samples to assess the
DL models trained with a multi-sample DA method cannot
properly assess the robustness of the models against how well
the models learn from such augmented data because many
seeds ought to have fuzzing samples but these fuzzers simply
cannot find any of these samples. Adopting a naive strategy
for fuzzing around the whole set of augmented data is very
challenging due to the huge size of the training dataset. The
model evaluation thus incurs a threat of omitting the robustness
assessment surrounding such relation instances.

In this paper, we propose Aster, a novel technique to
generate a seed test suite from the training dataset that
encodes the information of the data augmentation relation
for robustness evaluation of the model under test (MUT)
trained with the corresponding multi-sample DA method1.
Aster accepts the training dataset as a seed set X . It iteratively
evolves the states of the seeds in X . In each iteration, it
composes every seed in the current seed set with the other
seeds in the same set that are directly paired with the former
captured in the data augmentation process when training the
MUT. To compose a seed x with its directly paired seeds
to evolve the state of x to a new state, Aster prioritizes the
latter seeds in decreasing similarity between the prediction
vectors of x and each latter seed. It composes the prioritized
seeds with the current state of x in turn and stops further
evolving the state of x against the remaining seeds if the
similarity from the initial seed state does not increase further,
to balance the diversity introduced by data augmentation and
the target of evolving x away from the initial state to produce a
fuzzing sample eventually. Through the iterative compositions
of the current states of the seed over multiple iterations, the
perturbations between x and the directly and indirectly paired
seeds are gradually found (in the sense of reachability search
over the augmentation relation) and then composed into the
current states of x. Thus, each resulting replacement candidate
originated from a seed in the original seed pool X encodes

1Take Mixup [13] for example. Mixup produces a shuffled version S of
the training dataset T and pairs T and S in the same training epoch. It then
produces a set of augmented data from the pair of samples with the same
index position in both T and S (e.g., producing an augmented data x′ by
x′ = λT [i] + (1 − λ)S[i] for 0 ≤ i < |T | and 0 ≤ λ ≤ 1). In this case,
MixUp produces a data augmentation relation instance (T [i], S[i]).

the insights of relevant data augmentation relation instances 2.
The downstream fuzzers can then explore the encoded insights
to generate fuzzing samples.

We evaluate Aster on four benchmark datasets and DL
models in different complexities, including FashionMnist [26]
with MobileNetV2 [27], SVHN [28] with ShuffleNetV2 [29],
CIFAR10 [30] with ResNet20 [31] and CIFAR100 [30] with
ResNet56 [31] on Mixup [13]. These datasets and models are
widely used in DL testing and robustness improvement-related
research [18], [19], [21], [25], [32]. The main results show
that Aster significantly enhances fuzzers to generate more
adversarial examples from more seeds and reduces the ratio of
unsuccessful seeds, thereby providing a more comprehensive
robustness assessment of the DL models under test. Moreover,
after finetuning with the resulting fuzzing samples, the DL
models can be significantly more resilient against FGSM and
PGD attacks.

The main contribution of this paper is threefold: (1) To the
best of our knowledge, this paper presents the first empirical
study (controlled experiment) to expose the ineffectiveness
of the current generation of loss-based and coverage-based
fuzzing techniques to attack DL models trained with multi-
sample DA methods. (2) It proposes a novel technique, Aster.
Aster is the first seed generation technique to encode the
data augmentation relations over multiple samples into the
fuzzing seeds. (3) It shows the high effectiveness of Aster
by comprehensive experiments.

The rest of this paper is organized as follows. Section
II revisits the preliminaries of this work. Sections III and IV
present Aster and its evaluation. Section V reviews closely
related works, and we conclude this paper in Section VI.

2. PRELIMINARIES

2.1 DL Model and Adversarial Examples
A DL model f contains a sequence of layers. The first

layer is the input layer, which embeds the input samples into
an embedding space. The last layer is the output layer, which
produces the prediction result of the DL model. All layers in
between are called hidden layers.

Training dataset T , validation dataset V , and test dataset
D are normally used for standard training and evaluating DL
models. Each sample x in each dataset is labeled with a ground
truth cg . Samples in T , V , and D are called training samples,
validation samples, and test cases, respectively. A training
scheme uses T to train a DL model f and validates f on
V . The generated model is then evaluated on the test dataset
D. One kind of DL model is the classification model. Such
a model f classifies a sample x and outputs a probability
vector, denoted by f(x). The index with the highest prediction
probability is regarded as the prediction label, denoted as
c = argmaxc(f(x)[c]).

Adversarial example [33]–[35] are special samples
generated by adding perturbations to clean samples to fool

2We note that Aster does not judge any changes in prediction labels or
compare a prediction label to a ground truth label in generating the final
replacement candidates.

371

a DL model to produce misclassification. An adversarial
example x′ is generated from an input sample x within the
boundary ϵ in p-norm distance, denoted by x′ = x + ∆,
and satisfying two conditions: (1) ∥x − x′∥p < ϵ and, (2)
argmaxc(f(x

′)[c]) ̸= argmaxc(f(x)[c]).
Given a dataset X ∈ {T, V,D}, the top-1 accuracy of

f on X is the ratio of correct classification over the total
number of samples in X , which is |{argmaxc(f(x)[c])=cg|x∈X}|

|X| .
The top-1 accuracies for the three datasets are called training,
validation, and test accuracy, respectively. The sequence of
adversarial examples generated from datasets T , V , and D are
denoted as training robust dataset, validation robust dataset,
and test robust dataset, respectively. The corresponding top-1
accuracies of the three robust version datasets are called the
training, validation, and test robust accuracy, respectively.

2.2 Coverage- and Loss-based Generation of Fuzzing Samples

In this section, we revisit two coverage-based and one
loss-based fuzzing techniques.

DLFuzz [21] is an early coverage-based fuzzing
technique. It mutates the sample x to generate the new sample
x′ by maximizing the prediction difference between x and x′

as well as the neuron coverage [23] for x′, while keeping
in the x′ in the ϵ-bound of x. The objective function is
obj =

∑k
i=0 ci − c + λ

∑m
i=0 ni, where c is original class

label of x, ci (for i = 0, ..., k) is the labels with cofidence
lower than c, ni is the target neuron to be activated by x′.

Adapt [18] is a state-of-the-art coverage-based fuzzing
technique. It continuously learns the neuron-selection strategy
to guide the fuzzing process iteratively. It designs a vector
of 29 Boolean neuron features to characterize the features
of neurons in the MUT. Then, it mutates the input test
cases x to generate adversarial examples x′ by adding the
gradient of selected neurons to x and, at the same time,
adaptively changes the neuron-selection strategies based on
historic neuron-selection strategies and generated adversarial
examples in the testing process for further fuzzing process
until the assigned time budget expires.

RobOT [19] is the state-of-the-art loss-based fuzzing
technique. It generates adversarial examples iteratively
until the first-order loss of the generated adversarial
example converges. FOL-Fuzz is inspired by the robust
training scheme incorporating adversarial examples into
the clean training dataset with the objective function
minθ

1
n

∑n
i=1 max∥x′

i−xi∥≤ϵL(f(x
′
i), yi), where θ is the

weight matrix of the MUT f , xi and x′
i are input test case

and its adversarial examples correspondingly, ϵ is the bound
and yi is the ground truth for x. The key idea of RobOT is to
identify the test cases (around x) with the largest loss.

We also note that in the literature, some fuzzers have
adopted pre-trained models with single-sample DA methods
(e.g., the pre-trained ImagineNet model [18], [21]) as subjects
in their experiments. Their experimental results [18], [19], [21]
show that these fuzzers could effectively produce adversarial
examples for these MUTs.

Figure 1. Overview of Aster

2.3 Attacker Techniques

The FGSM and PDG methods, as described in [36] and
[37], respectively, are commonly used for perturbing samples
and evaluating the effectiveness of different robustness
improvement methods in experiments. FGSM is a single-step
perturbation method that involves adding a small gradient
along the loss gradient direction to a sample to produce a
perturbed version. PDG is a more refined version of FGSM,
which first adds a random gradient to a sample and then
iteratively adds perturbations along the current loss gradient.

2.4 Augmentation Relation over Training Samples

DL models trained with empirical risk minimization are
sensitive to adversarial examples because the distribution of
adversarial examples differs from the distribution of training
data. Mixup [13] addresses this problem. For a training sample
x with ground truth cg in a training epoch, Mixup [13] pairs
another training sample x1 with ground truth cg1 for x and
makes interpolation between them with the formula x = λ ·
x + (1 − λ) · x1 and cg = λ · cg + (1 − λ) · cg1, where λ
picks from Beta(α, α) distribution, and α ∈ (0, inf). Then,
the generated x and cg are used to train the model f in that
training epoch.

Let T be the original training dataset of the MUT f
that is trained with a multi-sample data augmentation method.
Suppose that a sample xi has been paired with the current seed
x to produce augmented data to train the MUT. We model all
these pairs as a relation denoted by C : T → 2T , where
xi ∈ C(x). We refer to C as the augmentation relation. We
also refer to the augmentation relation instance between x and
xi as direct and the sample xi as a DA-paring test case of x. If
a sample xj can be reached from x through the compositions
of more than one direct augmentation relation instance, we
call the relation instance between x and xj indirect. (For
instance, the relation instance between xj and x is indirect
if xj /∈ C(x) ∧ xj ∈ C(xi) ∧ xi ∈ C(x).)

3. OUR TECHNIQUE: ASTER

3.1 Overview

We have presented the overall process of Aster in
Section 1. Fig. 1 summarizes this overview. Specifically,

372

after obtaining the augmentation relation C, Aster iteratively
prioritizes and encodes the gradient information of the direct
augmentation relation instances of every original seed x
into the current state of x’s replacement candidate. By so
doing, it gradually encodes the gradient information of the
corresponding indirect augmentation relation instances of all
original seeds into the corresponding replacement candidates.
Finally, Aster outputs the replacement candidates Q.

3.2 Working Principle

To encode direct augmentation relation instances, our idea
is to approximate the encoding of the relation instance by
encoding the gradient directions from one seed x to the others
paired with x in these augmentation relation instances into
a replacement candidate of the seed x. However, for each
seed x, as many training epochs may have been applied, many
DA-pairing test cases C(x) may have been recorded. Adding
all of them to x may perturb x significantly, defying the
purpose of keeping the final replacement candidate human-
indistinguishable from x.

Our insight is that different samples in C(x) have different
distances from (a perturbed version of) x from the MUT’s
viewpoint. We formulate Aster to allow closer samples to
encode their required gradient directions among them first,
and their perturbed versions are gradually added to the
seed x. Thus, more distant samples will contribute smaller
perturbation units (shorter gradient directions) to be indirectly
or directly added to x. To realize the plan, we use the level of
indirectness between two samples in the augmentation relation
C as a basis. Samples connected by a shorter composition
sequence of direct augmentation relation instances are encoded
with the current sample earlier (their distances are deemed
shorter). This is realized as encoding the direct relation
instances for all seeds in one iteration before proceeding
to another. For samples with a direct augmentation relation
instance with the current sample, we order them by their
similarity to the current sample.

When a fuzzer uses the replacement candidate of x for
fuzzing the MUT, it will experience the gradient direction
contributions, primarily from the relation instances with DA-
pairing test cases of x and secondarily from the relation
instances with other DA-pairing test cases of other seeds. By
using, for example, the replacement candidate’s loss gradient, a
fuzzer has the potential to escape from exploring the directions
toward diverse augmented data relevant to x.

Fig. 2 illustrates the working principle of Aster using six
seeds, denoted by a to f where C(a) includes all the other
five seeds. We focus on illustrating how the perturbed version
of a encodes the gradient directions from it to samples b to
f . To simplify the presentation, for brevity, we directly use

the symbols a to f to represent the perturbed samples of
the corresponding seeds and say a encoding i to mean that
the former sample encodes a perturbation unit of the gradient
direction from it to the latter sample into the former sample.
In each subfigure, for ease of readers to follow, the distance
visually shown in the diagram follows the relative distances

Figure 2. Illustration on Working Principle of Aster

from sample a to other samples (in terms of cosine similarity
on their prediction vectors).

Aster starts from the six seeds in subfigure 2(i), which
shows the configuration at the start of the current iteration for
sample evolution. The seed a firstly encodes the augmentation
relation with b , then c , and then d . As depicted in subfigure
2(ii), the perturbed version a of the seed gradually evolves
to carry the perturbation units of three gradient directions
incrementally. When the perturbed version a further encodes
the relation with e , Aster finds the resulting perturbed sample
for a is more dissimilar to the original seed than the one
before the current encoding. So, it excludes the sample e
from further direct compositions with a , which is depicted
as e with a cross symbol in subfigure 2(ii). The sample f
is also excluded because it is more distant from a than e
when the current iteration starts. After completing the process
on a , Aster processes the other samples b to f using the
same procedure. As depicted in subfigure 2(iii), b encodes
the relations with c to e ; c encodes the relations with b
and d ; d encodes the relations with e and f ; and e
and f encode the relations with each other. Note that the
distances from the encoding a to b – d may evolve after
a round of encoding as depicted in the changes in positions
of corresponding symbols between subfigures 2(ii) and 2(iii).
In the next iteration to process a , as depicted in subfigure
2(iv), Aster encodes the relations with b , d , and c into
a (i.e., according to their distances from a). We can see
that these samples b to d also carry information about
the gradient directions of other sample pairs, which are also
encoded into a to different extents (as a way to encode the
indirect augmentation relations with respect to a).

3.3 Algorithm

Algorithm 1 summarizes the Aster seed generation
algorithm. It accepts three parameters: f is the model under
test, X is the training dataset that produces f , and k is the
maximum number of steps to decide sample state convergence.
At the end of the algorithm, it returns a map Q containing one
replacement candidate for each seed test case in X . Note that
each test case in Q may or may be an adversarial example of
the corresponding seed in T . The downstream fuzzer may use
Q instead of X as its seed test cases for fuzzing the model f .

373

Algorithm 1: The Aster Algorithm
Input : f ← model under test (MUT)

X ← original sequence of seed test cases
k ← no. of steps to check state convergence

Output: sequence of seed test cases Q
1 C = ∅, Q = ∅, S = ∅, F = ∅
2 for x ∈ X do
3 C(x) = RELEVANT(x)
4 x′ = x+ PROCESS(x, ∂obj/∂x)
5 Q(x) = x′

6 S(x) = SIM(f(x), f(x′))
7 end for
8 while AVG(F) not converged do
9 for x ∈ X do

10 u = ⟨SIM(f(Q(x)), f(Q(x1)))|x1 ∈ C(x)⟩
11 k′ = 0, v = ⟨⟩
12 for i ∈ ARGSORT(u) do
13 if k′ ≤ k then
14 x′ = Q(x) + PROCESS(x, [Q(x)− x] +

[Q(C(x)[i])− x]) ▷ encoding
15 if SIM(f(x), f(x′)) < S(x) then
16 k′ = 0
17 Q(x) = x′

18 S(x) = SIM(f(x), f(x′))
19 v = v + ⟨C(x)[i]⟩
20 else
21 k′ = k′ + 1
22 end if
23 else
24 break
25 end if
26 end for
27 C(x) = v
28 F(x)=AVG(⟨SIM(f(Q(x)), f(Q(x1))|x1∈C(x)⟩)
29 end for
30 for x ∈ X do
31 y = RAND(C(x))
32 w = CROSSOVER(C(x), C(y))
33 u = AVG(⟨SIM(f(Q(x)), f(Q(z)))|z ∈ w⟩)
34 if u > F(x) then
35 C(x) = w
36 F(x) = u
37 end if
38 end for
39 end while
40 return Q

Algorithm 1 first initializes four maps C, Q, S, and F in
line 1. All of them use the seeds in X as their keys. To know
which seeds have been paired with each seed x ∈ X in training
f through the applied multi-sample DA method, we use map
C to keep the augmentation relation. Each entry in map S
is to keep the similarity score between the prediction vectors
of two samples: a seed x ∈ X and the current replacement

candidate x′ of x. Map F is to keep how well the current
replacement candidate of each seed x ∈ X is similar to
the current replacement candidates of other seeds that have
been paired with this seed x for data augmentation in training
the model f . Specifically, it keeps the overall average of the
similarity scores on the corresponding prediction vectors for
each seed test case x ∈ X .

Algorithm 1 initializes the maps C, Q, and S for the
whole seed list X in line 2–7. For each seed x ∈ X , the
algorithm retrieves the DA-pairing test cases of x using the
function RELEVANT(·) in line 3. For instance, if the given
model under test f is trained with Mixup [13], RELEVANT(x)
will return the sequence of samples that have been mixed with
x to produce augmented data in training f . If x has never been
paired with other seeds to produce augmented data in training
f , the function will return a random sequence of seeds as
the DA-pairing test cases of x. Line 4 computes the gradient
for x backward the objective function obj = Loss(f(x), c′)
where c′ is the one-hot vector to represent the prediction label
c = argmaxc(f(x)[c]) for x, i.e., ∂obj

∂x = ∂Loss(f(x),c)
∂x , where

the loss function is the cross entropy. The algorithm adopts
cross entropy because the entropy term is widely used in many
fuzzing techniques [19], [20].

The algorithm then generates a perturbation (within a
given bound ϵ) for x using the PROCESS(x, ∂obj

∂x) function. The
PROCESS(x,∆) function accepts two parameters: a seed x and
a gradient ∆. It calculates a fraction ϵ of the gradient ∆ and
returns a clipped fraction of the gradient, i.e., clipped(ϵ·∆),
to ensure the difference between x and the perturbed version
of x does not exceed the bound ϵ. Then, the algorithm
adds the clipped fraction of gradient to x to generate a
replacement candidate x′, where x′ = clipped(x + ϵ·∂obj∂x)
and ∥x′ − x∥p < ϵ.

It keeps the replacement candidate x′ to Q(x) in line
5. And then, it computes a similarity score between the
prediction vectors of the seed x and the replacement candidate
x′ using SIM(·) in line 6. Specifically, the SIM(a, b) function
accepts two vectors as input parameters and calculates the
cosine similarity [38] between a and b, which is defined
as SIM(a, b) = a·b

∥a∥∥b∥ . We choose the cosine similarity to
measure the correlation between the two prediction vectors
due to its simplicity.

Over lines 8 to 39, Algorithm 1 adaptively evolves the
replacement candidates in Q. From lines 9 to 29, it iterates
over the seed list X . In the iteration for seed x ∈ X , the
algorithm aims to reduce the similarity score between the
prediction vectors of the replacement candidate Q(x) and the
DA-pairing test cases C(x) of the same seed x. Its purpose
is to search for a replacement candidate to align with the
replacement candidates of these DA-pairing test cases that are
best aligned with (i.e., most similar to) the former candidate.

Therefore, in line 10, the algorithm first computes
the similarity scores between the prediction vectors of the
replacement candidate Q(x) and the replacement candidate
Q(x1) of each DA-pairing test case x1 ∈ C(x) and keeps
the list of similarity scores into a list u (line 10). It then

374

incrementally evolves the replacement candidate Q(x) (lines
11 to 23). In line 11, the algorithm initializes a counter k′ to 0,
to record the consecutive number of times the similarity score
unable to improve (i.e., for smoothing the checking procedure
because of the statistical nature of DL models), and initializes
an empty sequence v to store surviving candidates, i.e., the
list of DA-pairing test cases can successfully evolve Q(x) to
reduce the similarity score between the prediction vectors of
Q(x) and x.

In lines 12 to 26, it iterates over u in descending order
of similarity score using the ARGSORT(·) function. These
iterations aim to evolve the replacement candidate Q(x) of
x by pairing with more similar replacement candidates of
the DA-pairing test cases of x first. Note that the function
ARGSORT(·) implemented by argsort(.) in Python numpy
library returns the indexes of the input sequence one by one
in sorted order but does not change the input sequence.

If the algorithm exhausts the attempt budget (line 13),
it breaks out from the loop (line 24). Otherwise, it aims to
search for a better state of the current replacement candidate
Q(x) in lines 14 to 19. Similar to line 4, the algorithm at
line 14 generates a new state of the replacement candidate x′

by computing both a fraction of the gradient from Q(x) to
x and another fraction of the gradient from the replacement
candidate Q(C(x)[i]) of the DA-pairing test case C(x)[i] to x,
and adds both fractions to the current replacement candidate
Q(x). Specificially, x′ is computed as x′ = clipped(Q(x) +
δ·((Q(x)−x)+(Q(C(x)[i])−x))), where ∥x′−x∥p < ϵ. (Note
that the resulting replacement candidate x′ is also clipped
to be within the perturbation bound ϵ from x.) Thus, an
augmentation relation instance (rather than a perturbation due
to an artificial setting such as a loss function irrelevant to the
MUT or a subjective criterion on activation values and feature
maps) is encoded into x′.

In line 15, if the similarity score between the prediction
vectors of the seed x and the new replacement candidate x′ is
smaller than the best similarity obtained so far, it resets k′ to
zero as a better state is found, updates Q(x) to keep the latest
replacement candidate x′, updates S(x) to hold the smaller
similarity score, and adds the DA-pairing test case C(x)[i] to
v (lines 15–19). Otherwise, it increases k′ by 1 to indicate that
the remaining attempt budget is reduced (line 21).

After processing the sequence u, in line 27, the algorithm
updates the DA-pairing test cases C(x) of x to the sequence of
surviving candidates v. So, in the next round of processing the
same seed x starting from line 9, the iteration on x can focus
on these DA-pairing test cases that can push their replacement
candidates toward lower similarity. In line 28, the algorithm
updates F(x) by calculating the mean cosine similarity score
between the prediction vectors of Q(x) and the replacement
candidate of each DA-pairing test case in the list C(x).

After a round of processing all the seeds in X , over
lines 30–39, the algorithm attempts to escape from the local
maximum. For each seed x ∈ X , it randomly selects a seed
y among the test cases in x’s current sequence of DA-pairing
test cases C(x) (line 31). It then retrieves the current sequence

of DA-pairing test cases C(y) of y, and randomly crossovers
the two sequences C(x) and C(y) using the CROSSOVER(·)
function, which returns a new sequence of DA-pairing test
cases w for x (line 32). More specifically, given two sequences
a and b, the CROSSOVER(a, b) function firstly generates two
random indexes i and j, where 0 < i < |a| and 0 < j <
|b|. Then, it appends the sequence ⟨b[j′]|j<j′<|b|⟩ after the
sequence ⟨a[i′]|i′<i⟩, and returns the concatenated sequence.
Line 33 calculates the mean cosine similarity score, denoted by
u, between the prediction vectors of Q(x) and the replacement
candidate of every DA-pairing test case in w. If u is greater
than the historic mean similarity stored in F(x), it updates
C(x) to w and F(x) to u (lines 34–36).

The loop condition at line 8 checks whether the overall
mean similarity score for all seeds cannot increase for k
consecutive iterations. The algorithm terminates the loop if
this is the case.

Finally, Algorithm 1 returns the map Q, which contains
the replacement candidates for the corresponding seeds in X .

4. EXPERIMENT

This section reports the evaluation on Aster. The
implementation code, the datasets, and the model weights are
available at https://github.com/KeepSpirit/Aster.

4.1 Research Questions

We aim to answer the following research questions.
RQ1: To what extent is Aster effective in boosting the

downstream fuzzing techniques to generate more
adversarial examples? Is Aster effective in enabling
these fuzzers to discover adversarial examples that they
have difficulties generating adversarial examples from
the original seeds? How does Aster compare to the
state-of-the-art techniques to generate seed test cases?
Are there any limitations of existing coverage-based and
loss-based fuzzers in fuzzing DL models with multi-
sample data augmentation?

RQ2: Is Aster more effective than state-of-the-art techniques
in boosting the effectiveness of downstream fuzzers to
improve the robustness of the models under test?

4.2 Experimental Setup

Environment. We implement Aster with the popular
machine learning library, Tensorflow 2.4.0. The experiments
are conducted on a Windows 10 with an i7-9700 processor,
64GB RAM, and a single NVIDIA GeForce 2080-Ti GPU
with 12GB VRAM.

DL model implementations. To evaluate Aster, we
select four representative DL models, MobileNetV2 [27],
ShuffleNetV2 [29], ResNet20 [31] and ResNet56 [31] as our
baselines. These baseline DL models are trained with Mixup
[13] by adopting existing implementations [39]. We choose
Mixup as the multi-sample DA method because of its wide
adoption in both academic and industry [40]–[45].

Datasets. We choose four benchmark datasets to evaluate
Aster, including FashionMnist [26], SVHN [28], CIFAR10

375

TABLE I
DESCRIPTIVE STATISTICS OF BENCHMARKS (BASELINES)

Case Dataset + Model Training Validation Test
1 FashionMnist+MobileNetV2 89.53 89.16 88.36
2 SVHN+ShuffleNetV2 94.00 93.65 93.47
3 CIFAR10+ResNet20 94.87 91.38 90.28
4 CIFAR100+ResNet56 83.04 69.04 68.66

[30] and CIFAR100 [30]. These four datasets were widely
used in experiments to evaluate fuzzing techniques. For test
images in each dataset, we randomly divide them into equal
halves: one half to serve as the validation dataset and another
half to serve as the test dataset in our experiment. Table I
summarizes the descriptive statistics of the four baselines DL
models trained with Mixup, which shows the case number,
the dataset and model, and the training, validation, and test
accuracy of each benchmark.

Seed Generators and Fuzzers. We choose three
representative test case generation techniques DLFuzz [21],
Adapt [18], and RobOT [19] to compare with Aster to generate
seeds for fuzzers (i.e., as seed generators). We adopt their
publicly available code from their Github repositories: DLFuzz
[46], Adapt [47], and RobOT [48]. Since these techniques are
also fuzzers, we adopt their implementations as the fuzzers to
accept the seeds generated by the seed generators.

Hyperparameters. We set the learning rate to 0.001 at the
start of training the MUT with Mixup [13], which is reduced
by a factor of 10 at every 50 epochs for cases 1 – 3 , and every
100 epochs for case 4 . We follow [19] to set up FGSM and
PGD: The step sizes of cases 1 – 2 and 3 – 4 in FGSM
and PGD are 0.03 and 0.01, respectively. The fuzzing bound ϵ
for fuzzers is 0.05. The single step sizes of cases 1 – 2 and
3 – 4 in PGD are 0.03/6 and 0.01/6 with the total number

of steps 10, respectively. For DLFuzz and Adapt, we set the
activation threshold for neuron coverage to 0.5 and set the
fuzzing time budget for cases 1 – 2 to 5 seconds, while 10
seconds for cases 3 – 4 . We follow [19] to set up RobOT with
ξ = 10−18, k = 5, λ = 1 and iters = 3, which are described
in [19] originally. For Aster, we configure Algorithm 1 with
p-norm=inf-norm, k = 3, ϵ = 0.05, and δ = 0.005. To retrain
MUTs, we set training epochs to 40 and the learning rate to
1e−4 for four cases.

Experimental Procedure. We treat each baseline DL
mode as a MUT to answer the above research questions. For
each benchmark, we use the whole training samples from the
downloaded training dataset as the control group, denoted as
the original seed pool PClean. We input the seed pool PClean

into all remaining seed generators (Aster, DLFuzz, Adapt, and
RobOT) to output their generated seed pools, denoted as seed
pools PAster, PDLFuzz , PAdapt, and PRobOT , respectively.

We input each seed pool to each fuzzer (DLFuzz, Adapt,
and RobOT) to the corresponding MUT with a fuzzing time
budget of t seconds where t ∈ {1000, 2000, 3000}, which
generates an adversarial example dataset A. We count the
number of adversarial examples in A generated from each

seed. We set the fuzzing time budget following RobOT [19]
and extend the duration for studying the feasibility of Aster.

We next assess the robustness improvement achieved by
different seed generators. We first create a copy B of each set
A stated in the paragraph above. We then use the following
iterative procedure to produce the retrained model of the MUT:
In each iteration, we use the whole set B with the original
training dataset to retrain the MUT using the retraining script
[48] of RobOT. We keep the model with the best validation
robust accuracy. To sustain the validation accuracy of the
resulting retrained model, suppose its validation accuracy
reduces more than 1% compared to the validation accuracy of
the MUT. In that case, we randomly delete m samples in the
set B and then repeat the iteration, where m equals 10% of the
number of samples in A. (Note that the validation accuracy of
the resulting retrained model would not reduce more than 1%
in our experiments when the size of adversarial examples is
smaller than 20000.) Otherwise, the iteration procedure ends.
We then evaluate the retrained model’s test accuracy and test
robust accuracy. We note that the same checking condition is
used in retraining a model in the experiment of RobOT [19].

Evaluation and Metrics. To answer RQ1, we measure
the number of generated adversarial examples from each seed
pool (PClean, PDLFuzz , PAdapt, PRobOT and PAster) for each
combination of fuzzer and fuzzing time budget. The larger
the number of generated adversarial examples, the better the
corresponding seed generator.

We conduct the Wilcoxon signed-rank test [49] with
Bonferroni correction at the 5% significance level and
calculate the effect sizes by Cohen’s d [50] to check
whether the differences in the number of generated adversarial
examples between PAster and the other seed generators are
statistically meaningful. A lower p-value indicates a stronger
level of significance. Additionally, the effect size metric
categorizes the strength of the relationship between two
variables into magnitudes such as very small, small, medium,
large, very large, and huge [50]. If the effect size [50] falls
under a low strength level (e.g., small), the difference between
the two lists is negligible, despite a significant p-value.

A processed seed of a fuzzer is a seed used to generate
perturbed samples by the fuzzer. An unsuccessful seed is
a processed seed, but the fuzzer cannot generate adversarial
examples. Given the seed test cases generated from a seed
generator, we also measure the unsuccessful ratio calculated
by dividing the number of unsuccessful seeds by the number
of processed seeds by the fuzzer using a given fuzzing time
budget. The smaller the ratio, the better the seed generator.

We follow RobOT [19] to generate test robust datasets
for each MUT f from the corresponding test dataset using
the same two attack techniques: FGSM [36] and PGD [37].
The sizes of test robust datasets generated by FGSM for
cases 1 – 4 are 2350, 8878, 3185, and 4411, respectively.
These generated by PGD are 3783, 12914, 4837, and 4963,
respectively.

For each sample in test robust datasets, if a model predicts
a label the same as the ground truth label of the sample, we

376

(a) FashionMnist + MobileNetV2 (b) SVHN + ShuffleNetV2

(c) CIFAR10 + ResNet20 (d) CIFAR100 + ResNet56

Figure 3. Number of generated fuzzing samples: the x-axis shows the time budget used for three fuzzers, and the y-axis is
the number of fuzzing samples generated by the fuzzer. Aster outperforms all peer techniques in all plots.

count the sample correctly predicted by the model. We refer to
the proportion of the test robust dataset that the model predicts
correctly as test robust accuracy of the model.

To answer RQ2, we measure the test robust accuracy
improvement achieved by each seed generator: Recall that
each retrained model is retrained with the adversarial examples
of the seeds generated from a seed generator. We call the
retrained model produced from the seed generator. We subtract
the test robust accuracy of each MUT f from the test robust
accuracy of each corresponding retrained model f ′ produced
by each seed generator and call the result as the test robust
accuracy improvement achieved by the seed generator.

Let the test robust accuracy improvement achieved by
a seed generator G be AG. The test robust accuracy
improvement ratio achieved by a seed generator G is (AG −
AClean)/AClean.

4.3 Results and Data Analysis

Producing More Successful Seeds. Fig. 3 contains four
sets of plots, one for each case. In each set of plots, there
are three plots from left to right corresponding to the three
different fuzzers (DLFuzz, Adapt, and RobOT) serving as seed
generators to generate fuzzing samples (adversarial examples).
Each plot shows five series of points with different markers
and line styles corresponding to the five seed generators
(Clean, DLFuzz, Adapt, RobOT, and Aster). Each series of
points shows the numbers of generated fuzzing samples by
the fuzzer with three different fuzzing time budgets (t ∈
{1000, 2000, 3000} seconds) using the seed pool generated

TABLE II
UNSUCCESSFUL RATIO OF PROCESSED SEEDS (LOWER IS BETTER)

Case Seed
Generator

Fuzzer (with t = 3000s)
DLFuzz Adapt RobOT

1

Clean 70.18% 64.88% 65.12%
DLFuzz 70.02% 62.31% 65.08%
Adapt 65.50% 62.31% 67.13%

RobOT 47.91% 44.82% 67.13%
Aster 30.38% 28.05% 36.35%

2

Clean 58.60% 61.27% 25.61%
DLFuzz 58.26% 60.27% 26.10%
Adapt 57.93% 57.77% 28.59%

RobOT 23.42% 26.78% 28.10%
Aster 8.01% 8.51% 26.51%

3

Clean 27.70% 17.69% 49.57%
DLFuzz 27.03% 21.00% 51.68%
Adapt 22.97% 16.67% 54.53%

RobOT 5.07% 1.69% 55.29%
Aster 0% 0% 40.09%

4

Clean 10.37% 9.03% 72.29%
DLFuzz 10.70% 9.03% 73.92%
Adapt 9.03% 8.70% 73.09%

RobOT 3.34% 1.03% 74.07%
Aster 0% 0% 22.74%

by the corresponding seed generator. We should note that, for
all seed pools, the average time budget used in Aster for each
seed is lower than the other three seed generators.

Across all 12 plots in Fig. 3, for the same combination of
fuzzer (x-asix label) and fuzzing time budget (x-value), seeds

377

TABLE III
TEST ROBUST ACCURACY IMPROVEMENT ON FGSM TEST ROBUST DATASET

Case Seed
Generator

Fuzzer
DLFuzz Adapt RobOT

1000s 2000s 3000s 1000s 2000s 3000s 1000s 2000s 3000s

1

Clean 32.26 37.23 36.68 30.09 35.19 35.11 38.51 40.13 42.38
DLFuzz 32.26 (0%) 35.53 (−5%) 38.98 (6%) 38.38 (28%) 43.11 (23%) 44.77 (28%) 40.21 (4%) 40.13 (0%) 44.60 (5%)
Adapt 35.06 (9%) 39.96 (7%) 39.66 (8%) 34.89 (16%) 39.49 (12%) 44.17 (26%) 33.96 (−2%) 40.68 (1%) 40.13 (−5%)

RobOT 43.66 (35%) 47.32 (27%) 52.81 (44%) 43.70 (45%) 46.98 (34%) 51.02 (45%) 38.02 (−1%) 40.12 (0%) 42.77 (0%)
Aster 52.17 (62%) 53.11 (43%) 60.94 (66%) 51.49 (71%) 54.77 (56%) 59.49 (69%) 43.53 (13%) 46.40 (16%) 49.51 (17%)

2

Clean 8.41 8.54 8.46 8.67 8.37 8.45 11.16 13.97 14.69
DLFuzz 8.19 (−3%) 8.34 (−2%) 8.47 (0%) 8.17 (−6%) 8.23 (−2%) 9.63 (14%) 10.67 (−4%) 12.74 (−9%) 14.32 (−3%)
Adapt 8.03 (−5%) 8.38 (−2%) 8.71 (3%) 8.64 (0%) 8.31 (−1%) 8.62 (2%) 10.06 (−10%) 12.01 (−14%) 13.69 (−7%)

RobOT 14.08 (67%) 18.24 (114%) 18.65 (120%) 14.29 (65%) 18.54 (122%) 18.39 (118%) 12.16 (9%) 15.88 (14%) 17.22 (17%)
Aster 16.65 (98%) 21.83 (156%) 26.03 (208%) 17.14 (98%) 22.26 (166%) 27.01 (220%) 15.32 (37%) 17.97 (29%) 20.11 (37%)

3

Clean 24.62 25.34 28.51 24.30 25.65 27.76 30.11 35.35 40.38
DLFuzz 23.45 (−5%) 26.00 (3%) 27.28 (−4%) 24.02 (−1%) 26.84 (5%) 27.22 (−2%) 29.86 (−1%) 33.94 (−4%) 37.83 (−6%)
Adapt 23.99 (−3%) 25.87 (2%) 26.15 (−8%) 22.89 (−6%) 27.38 (7%) 27.94 (1%) 28.95 (−4%) 33.50 (−5%) 37.55 (−7%)

RobOT 28.10 (14%) 32.03 (26%) 35.48 (24%) 24.17 (20%) 32.06 (25%) 35.01 (26%) 28.41 (−6%) 34.69 (−2%) 39.37 (−3%)
Aster 30.08 (22%) 39.43 (56%) 45.15 (58%) 30.99 (28%) 40.78 (59%) 45.18 (63%) 33.34 (11%) 41.13 (16%) 47.66 (18%)

4

Clean 21.88 22.29 22.47 21.02 21.70 22.47 21.49 22.53 24.35
DLFuzz 20.72 (−5%) 21.67 (−3%) 23.85 (6%) 20.83 (−1%) 21.81 (1%) 23.37 (4%) 21.24 (−1%) 22.29 (1%) 23.12 (−5%)
Adapt 21.40 (−2%) 22.85 (3%) 23.60 (5%) 21.42 (2%) 21.74 (0%) 22.58 (0%) 21.76 (1%) 22.87 (2%) 24.76 (2%)

RobOT 20.86 (−5%) 23.44 (5%) 24.73 (10%) 21.90 (4%) 23.08 (6%) 25.69 (14%) 22.01 (2%) 23.03 (2%) 24.17 (−1%)
Aster 23.49 (7%) 26.30 (18%) 30.95 (38%) 23.60 (12%) 26.07 (20%) 30.29 (35%) 24.51 (14%) 27.05 (20%) 30.54 (25%)

output by Aster always generates more fuzzing samples than
seeds output by Clean, DLFuzz, Adapt, and RobOT.

In each plot, the Clean series is always the lowest. It
almost entirely overlaps with the DLFuzz and Adapt series
in nine plots. In the remaining plots, the DLFuzz and Adapt
series are only slightly higher than the Clean series. They are
significantly lower than the RobOT series in 10 plots. Still, all
these series have observable gaps from the Aster series.

Across three fuzzers, the averaged numbers of generated
fuzzing samples among the four benchmarks using the fuzzing
time budget t = 3000 for the five seed generators (Clean,
DLFuzz, Adapt, RobOT, and Aster) are as follows: (1) 9462,
10573, 11424, 17908, and 20399 for DLFuzz; (2) 9607, 11001,
11283, 17910, and 20544 for Adapt; and (3) 3568, 3714,
3625, 5635, and 6498 for RobOT, respectively. Comparing the
numbers of fuzzing samples generated by Aster with Clean,
DLFuzz, Adapt, and RobOT, we observe that Aster wins by
a large margin: 116%, 93%, 79%, and 14% improvement
for DLFuzz as the fuzzer, 114%, 87%, 82%, and 15%
improvement for Adapt as the fuzzer, and 82%, 75%, 79%,
and 15% improvement for RobOT as the fuzzer, respectively.

We have also conducted the Wilcoxon signed-rank test
between Aster and each peer seed generator on the number
of fuzzing samples generated by all combinations of fuzzers,
benchmarks, and time budgets. All p-values are smaller than
5%, and the effect sizes are at either the large or the very large
levels, showing that the number of fuzzing samples generated
by Aster is larger than all peer seed generators significantly in
a statistically meaningful way.

Table II shows the unsuccessful ratio of processed
seeds (see Evaluation and Metrics in Section 4) for each
combination of seed generator and fuzzer with 3000 seconds
of fuzzing budget. The smaller the ratio, the better the seed
generator. The table contains 24 combinations of benchmarks

and fuzzers for each seed generator.

Clean has the highest unsuccessful ratios in 6 out of
12 combinations. Aster achieves the smallest ratios in 11
combinations (92%). It generates adversarial examples from
every processed seed in 4 combinations (33%); whereas no
other seed generators can generate adversarial examples from
every processed seed in a combination. On average, Aster
achieves 16.72% in unsuccessful ratio, and the other four
seed generators (Clean, DLFuzz, Adapt, and RobOT) achieve
44.36%, 44.62%, 43.78%, and 31.55%, respectively. The
improvements of Aster over other seed generators are large.

Limitations of Current Generation of Coverage-
based and Loss-based Fuzzers. Table II also shows the
results of the same technique serving as the generator and
fuzzer. DLFuzz and Adapt (the two coverage-based fuzzing
techniques) alone are ineffective in Cases 1 and 2 , and
RobOT (the loss-based fuzzing technique) alone is ineffective
in all but Case 2 , which result in high unsuccessful ratios of
processed seeds. Their combinations (i.e., using one technique
to produce seeds for another technique to produce fuzzing
samples) improve the corresponding unsuccessful ratios in all
four cases, where the best combinations are RobOT+Adapt
(44.82%), RobOT+DLFuzz (23.42%), RobOT+Adapt (1.69%),
and RobOT+Adapt (1.03%), respectively. All of them achieve
lower unsuccessful ratios than using the three fuzzers in a
standalone manner. Still, in Case 1 , the high ratio of 44.82%
indicates that the model assessment based on how well a
DL model defends the attack from the Adapt fuzzing task is
inadequate. Moreover, these combinations are all less effective
than the corresponding best combination of Aster (as the seed
generator) and the other fuzzer techniques.

378

TABLE IV
TEST ROBUST ACCURACY IMPROVEMENT ON PGD TEST ROBUST DATASET

Case Seed
Generator

Fuzzer
DLFuzz Adapt RobOT

1000s 2000s 3000s 1000s 2000s 3000s 1000s 2000s 3000s

1

Clean 27.91 32.78 35.58 28.84 33.23 33.68 30.80 33.84 34.71
DLFuzz 28.26 (1%) 33.41 (2%) 36.66 (3%) 32.91 (14%) 37.32 (12%) 41.16 (22%) 31.88 (4%) 34.39 (2%) 35.69 (3%)
Adapt 29.87 (7%) 35.34 (8%) 35.18 (−1%) 33.15 (15%) 35.55 (7%) 39.89 (18%) 27.39 (−11%) 32.25 (−4%) 32.38 (−2%)

RobOT 37.56 (35%) 42.90 (31%) 49.46 (39%) 40.21 (39%) 45.54 (34%) 49.62 (47%) 32.25 (5%) 35.71 (6%) 36.08 (4%)
Aster 46.39 (66%) 46.97 (43%) 58.21 (64%) 45.68 (58%) 50.70 (53%) 56.46 (68%) 37.40 (21%) 39.36 (16%) 44.57 (28%)

2

Clean 10.14 10.07 10.24 10.19 10.08 10.19 93.4 10.34 10.72
DLFuzz 10.25 (1%) 10.18 (1%) 10.42 (2%) 9.97 (−2%) 10.41 (3%) 9.45 (−7%) 9.42 (1%) 10.10 (−2%) 10.55 (−2%)
Adapt 10.07 (−1%) 10.00 (−1%) 10.40 (2%) 9.85 (−3%) 10.32 (2%) 10.44 (2%) 10.12 (8%) 10.35 (0%) 10.64 (−1%)

RobOT 11.01 (9%) 12.24 (22%) 13.44 (31%) 10.56 (4%) 12.07 (20%) 12.95 (27%) 9.90 (6%) 10.76 (4%) 11.40 (6%)
Aster 12.55 (24%) 14.80 (47%) 17.96 (75%) 12.13 (19%) 14.85 (47%) 18.92 (86%) 11.01 (18%) 12.26 (19%) 13.28 (24%)

3

Clean 19.04 20.96 23.98 19.60 21.03 23.73 24.60 32.46 37.07
DLFuzz 18.83 (−1%) 20.63 (3%) 21.50 (23%) 19.81 (1%) 21.54 (2%) 21.98 (−7%) 24.09 (−2%) 29.01 (−11%) 33.47 (−10%)
Adapt 19.66 (3%) 21.07 (1%) 22.64 (−6%) 19.56 (0%) 22.27 (6%) 22.49 (−5%) 23.78 (−3%) 29.40 (−9%) 33.93 (−8%)

RobOT 23.44 (23%) 27.56 (31%) 32.54 (36%) 23.65 (21%) 28.30 (35%) 32.25 (36%) 23.20 (−6%) 31.32 (−4%) 36.65 (−4%)
Aster 24.62 (29%) 36.08 (72%) 45.46 (90%) 24.83 (27%) 37.25 (77%) 45.83 (93%) 27.33 (11%) 38.04 (17%) 46.25 (25%)

4

Clean 12.53 12.79 13.72 11.91 12.39 13.38 12.39 12.75 13.92
DLFuzz 12.25 (−2%) 13.32 (4%) 13.58 (−1%) 12.07 (1%) 13.32 (−8%) 13.46 (1%) 12.27 (0%) 12.94 (1%) 13.56 (−3%)
Adapt 11.91 (−5%) 13.30 (4%) 13.70 (0%) 12.37 (4%) 13.26 (7%) 13.46 (1%) 12.33 (0%) 13.14 (3%) 14.37 (3%)

RobOT 12.75 (2%) 13.50 (6%) 15.01 (9%) 12.71 (7%) 13.90 (12%) 14.79 (11%) 12.96 (5%) 13.20 (4%) 13.44 (−3%)
Aster 13.56 (8%) 15.27 (19%) 19.24 (40%) 13.52 (14%) 15.64 (26%) 18.11 (35%) 15.14 (22%) 17.37 (36%) 18.91 (36%)

Answering RQ1

Aster is significantly more effective in enabling fuzzers
to generate more adversarial examples than Clean and
the peer seed generators and enhancing fuzzers to
generate adversarial examples from significantly more
seeds. Moreover, all peer coverage-based and loss-
based fuzzers can sometimes be highly ineffective in
producing adversarial examples.

Achieving Higher Robust Improvement. Tables III and
IV summarize the test robust accuracy improvement results
on the FGSM and PGD test robust dataset, respectively. Each
table contains four sections, from top to bottom, for Cases
1 to 4 . The first two columns show the indexes of the

four cases (i.e., Cases 1 to 4) and the five seed generators
(i.e., Clean, DLFuzz, Adapt, RobOT, and Aster), respectively.
The remaining columns show the nine combinations of three
fuzzers (DLFuzz, Adapt, and RobOT) and three fuzzing time
budgets (t ∈ {1000, 2000, 3000}). Each cell in these nine
columns shows a pair of values: the test robust accuracy
improvement achieved by the seed generator followed by its
test robust accuracy improvement ratio (the latter is shown
in parentheses). Take Aster in the combination of Case 1 ,
DLFuzz as the fuzzer, and the time budget of 1000 seconds in
Table III as an example. The test robust accuracy improvement
achieved by Aster is 52.17%, and the test robust accuracy
improvement ratio achieved by Aster is 62% (rounded to the
nearest whole number). The two tables as a whole contain 72
such combinations for each seed generator.

Only Aster is consistently higher than Clean and all
other seed generators in robust accuracy improvement in all
72 combinations. Moreover, the difference is amplified as
the fuzzing budget increases. DLFuzz, Adapt, and ROBOT

fail in 35, 35, and 12 combinations, respectively, where
they even produce worse retrained models than Clean (i.e.,
negative robust accuracy improvement ratio). On average,
Aster outperforms Clean, DLFuzz, Adapt, and RobOT by
40.43%, 37.79%, 38.89%, and 17.69% in robust accuracy
improvement ratio, where the differences are large and
significant. Also, the robust accuracy improvement ratios
achieved by Aster in 66 out of the 72 combinations (92%) are
higher than the best of all other seed generators by at least 10%
in robust accuracy improvement ratio, and 25 combinations
(35%) by at least 30%. RobOT is more effective than the
two coverage-based techniques (DLFuzz and Adapt) but is
not always the case (e.g., in the combination of Case 1 ,
RobOT as fuzzer, and time budget of 3000 seconds in Table
III and the combination of Case 4 , RobOT as fuzzer, and
time budget of 3000 seconds in Table IV). In 32 out of the
72 combinations (44%), RobOT cannot outperform the best
of these two techniques by 10% or more in the test robust
accuracy improvement ratio. The overall result shows that
Aster significantly outperforms the peer seed generators in
model robustness improvement.

Answering RQ2

Aster significantly outperforms the peer techniques
in improving the robustness of the retrained models,
and generalizes for different benchmarks with multi-
sample DA methods.

4.4 Threats to Validity

We evaluate Aster on limited combinations of DL models,
datasets, fuzzers, test robust datasets, hyperparameters,
thresholds to produce retrained models, and multi-sample
DA method. We have not evaluated Aster on MUTs without

379

applying DA or trained with single-sample DA. We leave
the generalization as future work. We adopt the publicly
available repository [46]–[48] for peer techniques and those
codes may contain bugs unknown to us. We have tested our
implementation. The test accuracy of all resulting retrained
models is within 1% compared to the MUTs. We observe that
Aster is more efficient than the peer techniques.

5. RELATED WORK

5.1 Data Augmentation

Data augmentation techniques improve the generalization
of DL models and alleviate overfitting to training data.
They generate additional samples from the original input
samples but without additional labeling effort by adopting
some special transformation operations. There are geometric
transformations data augmentation (e.g., scaling, rotating,
and shearing [1], [51]), region-level data augmentation (e.g.,
CutMix [14]) and pixel-level data augmentation (e.g., Mixup
[13], and AugMix [12]). They mix samples and their labels
to produce augmented data. In Aster, the seeds composed
together are related by the data augmentation relation of the
underlying DA method and are specific to the model under
test. We are not aware of any existing DL testing techniques
using any DA relations.

5.2 Loss-based and Coverage-based Fuzzers

DL systems are vulnerable to adversarial examples,
highlighting the need to evaluate their robustness. Many
fuzzing testing techniques have been proposed to address this
issue [18], [19], [21]–[23], [25], [35], [52]–[56].

The coverage-based fuzzing techniques for testing deep
learning models aim to maximize the specific coverage criteria
as well as discover the misbehavior of the MUT, which mostly
rely on structural coverage criteria to guide their techniques,
including the use of the neuron coverage in DeepXplore
[23], DLFuzz [21], and Adapt [18], the k-multisection neuron
coverage and neuron boundary coverage in DeepGauge [24]
or combining multiple coverage criteria in DeepHunter [25].
The loss-based fuzzing techniques [19], [20] perturb seed test
cases towards the direction of generating larger errors based
on their specific adopted loss function, such as the first-order
loss in [19] and the cross-entropy loss in [20]. The mutation-
based fuzzing techniques [22], [57] generate mutants from the
given seed test case and models via different mutators and kill
them, which can be time-consuming for adversarial example
generations compared to the other two types. These techniques
are not designed for fuzzing DL models trained with multi-
sample data augmentations. Our experiment has shown their
limitations on these models. Aster smooths the gradient of a
seed by encoding the gradients observed from the DA relation
into the seed, thereby providing a gradient clue for a fuzzer
to explore the surrounding regions of the resulting seed.

6. CONCLUSION

DL models trained with one type of augmented data
should be tested before deployment on the same type of

augmented data. However, even though multi-sample data
augmentation is popular to apply, the robustness of the
resulting DL models are often not assessed against the
same data augmentation. We have presented the first work
that generates a robustness-oriented seed set for the training
database. This seed set is encoded with the concrete multi-
sample data augmentation relation that has been realized in
training the DL models under test, which sets it apart from
the datasets generated by all other fuzzers. We have proposed
a novel technique Aster for this purpose and validated its
feasibility and high effectiveness. We have also shown the
current generation of coverage-based and loss-based fuzzing
techniques cannot always fuzz such DL models effectively.
Our work calls for the next-generation of testing techniques to
test DL models trained with a multi-sample data augmentation
method.

7. ACKNOWLEDGMENTS

This research is partly supported by the CityU MF EXT
(project no. 9678180).

REFERENCES

[1] C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1,
pp. 1–48, 2019.

[2] A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive
survey of modern approaches,” Array, p. 100258, 2022.

[3] Y. Shen, L. Heacock, J. Elias, K. D. Hentel, B. Reig, G. Shih, and
L. Moy, “Chatgpt and other large language models are double-edged
swords,” Radiology, p. 230163, 2023.

[4] A. Haleem, M. Javaid, and R. P. Singh, “An era of chatgpt as a significant
futuristic support tool: A study on features, abilities, and challenges,”
BenchCouncil Transactions on Benchmarks, Standards and Evaluations,
vol. 2, no. 4, p. 100089, 2022.

[5] Y. Huai, Y. Chen, S. Almanee, T. Ngo, X. Liao, Z. Wan, Q. A. Chen,
and J. Garcia, “Doppelganger test generation for revealing bugs in
autonomous driving software,” in Proceedings of 2023 IEEE/ACM 45nd
International Conference on Software Engineering (ICSE), 2023.

[6] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone, “Reward
(mis)design for autonomous driving,” Artif. Intell., vol. 316, p. 103829,
2023.

[7] D. K. Sharma, M. Chatterjee, G. Kaur, and S. Vavilala, “Deep learning
applications for disease diagnosis,” in Deep Learning for Medical
Applications with Unique Data, D. Gupta, U. Kose, A. Khanna, and
V. E. Balas, Eds. Academic Press, 2022, pp. 31–51.

[8] T. Liu, E. Siegel, and D. Shen, “Deep learning and medical image
analysis for covid-19 diagnosis and prediction,” Annual Review of
Biomedical Engineering, vol. 24, pp. 179–201, 2022.

[9] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image
analysis,” Annual review of biomedical engineering, vol. 19, p. 221,
2017.

[10] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green,
C. Qin, A. Žı́dek, A. W. Nelson, A. Bridgland et al., “Improved protein
structure prediction using potentials from deep learning,” Nature, vol.
577, no. 7792, pp. 706–710, 2020.

[11] K. Alomar, H. I. Aysel, and X. Cai, “Data augmentation in classification
and segmentation: A survey and new strategies,” Journal of Imaging,
vol. 9, no. 2, 2023.

[12] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and
B. Lakshminarayanan, “Augmix: A simple data processing method to
improve robustness and uncertainty,” arXiv preprint arXiv:1912.02781,
2019.

[13] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond
empirical risk minimization,” vol. abs/1710.09412, 2017.

[14] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019, pp. 6022–6031.

380

[15] A. F. M. S. Uddin, M. S. Monira, W. Shin, T. Chung, and S.-
H. Bae, “Saliencymix: A saliency guided data augmentation strategy
for better regularization,” in International Conference on Learning
Representations, 2021.

[16] J. Kim, W. Choo, H. Jeong, and H. O. Song, “Co-mixup: Saliency guided
joint mixup with supermodular diversity,” in International Conference
on Learning Representations, 2021.

[17] A. Dabouei, S. Soleymani, F. Taherkhani, and N. M. Nasrabadi,
“Supermix: Supervising the mixing data augmentation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021, pp. 13 794–13 803.

[18] S. Lee, S. Cha, D. Lee, and H. Oh, “Effective white-box testing of deep
neural networks with adaptive neuron-selection strategy,” in Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 165–176.

[19] J. Wang, J. Chen, Y. Sun, X. Ma, D. Wang, J. Sun, and P. Cheng,
“Robot: Robustness-oriented testing for deep learning systems,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 300–311.

[20] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz
testing based data augmentation to improve robustness of deep
neural networks,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1147–1158.

[21] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2018, New York, NY, USA, 2018, p. 739–743.

[22] Z. Wei and W. Chan, “Fuzzing deep learning models against natural
robustness with filter coverage,” in Proceedings of 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
(QRS), 2021, pp. 608–619.

[23] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1–18.

[24] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu, J. Zhao, and Y. Wang, “Deepgauge: Multi-
granularity testing criteria for deep learning systems,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE 2018, New York, NY, USA, 2018, p. 120–131.

[25] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: A coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2019, New York, NY, USA, 2019, p. 146–157.

[26] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[27] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[28] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

[29] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European Conference on Computer Vision (ECCV), September 2018.

[30] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, University of Tornoto, 2009.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Long Beach, CA, USA: IEEE, 2016, pp. 770–
778.

[32] X. Xie, T. Li, J. Wang, L. Ma, Q. Guo, F. Juefei-Xu, and Y. Liu, “Npc:
Neuron path coverage via characterizing decision logic of deep neural
networks,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 3, Apr 2022.

[33] E. D. Cubuk, B. Zoph, S. S. Schoenholz, and Q. V. Le, “Intriguing
properties of adversarial examples,” 2017.

[34] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2015.

[35] D. Ma, T. S. Rosing, and X. Jiao, “Testing and enhancing adversarial
robustness of hyperdimensional computing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, p. 1–1,
2023.

[36] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2014.

[37] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 2017.

[38] M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitányi, “The similarity metric,”
IEEE transactions on Information Theory, vol. 50, no. 12, pp. 3250–
3264, 2004.

[39] S. J. Yann N. Dauphin and J. Ma, “Mixup,” 2018. [Online]. Available:
https://github.com/facebookresearch/mixup-cifar10

[40] E. Pereira, G. Carneiro, and F. R. Cordeiro, “A study on the impact
of data augmentation for training convolutional neural networks in
the presence of noisy labels,” in 2022 35th SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), vol. 1, 2022, pp. 25–30.

[41] H. Bai, R. Sun, L. Hong, F. Zhou, N. Ye, H.-J. Ye, S.-H. G. Chan,
and Z. Li, “Decaug: Out-of-distribution generalization via decomposed
feature representation and semantic augmentation,” in AAAI Conference
on Artificial Intelligence, 2020.

[42] S. Mohseni, H. Wang, C. Xiao, Z. Yu, Z. Wang, and J. Yadawa,
“Taxonomy of machine learning safety: A survey and primer,” ACM
Comput. Surv., vol. 55, no. 8, dec 2022.

[43] C. Li, J. Cao, and X. Zhang, “Robust deep learning method to detect face
masks,” in Proceedings of the 2nd International Conference on Artificial
Intelligence and Advanced Manufacture, ser. AIAM2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 74–77.

[44] H. Shui, H. Li, D. Upadhyay, P. Narayanan, and A. S. Admasu, “Mixup
for robust image classification - application in continuously transitioning
industrial sprays,” in First Workshop on Interpolation Regularizers and
Beyond at NeurIPS 2022, 2022.

[45] S.-H. Lee, J.-H. Kim, H. Chung, and S.-W. Lee, “Voicemixer:
Adversarial voice style mixup,” in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp.
294–308.

[46] Turned2670, “Dlfuzz,” 2018. [Online]. Available: https://github.com/
turned2670/DLFuzz

[47] Kupl, “Adapt,” 2020. [Online]. Available: https://github.com/kupl/
ADAPT

[48] W. J. SmallkeyChen, “Robot,” 2021. [Online]. Available: https:
//github.com/Testing4AI/RobOT

[49] R. F. Woolson, “Wilcoxon signed-rank test,” Wiley encyclopedia of
clinical trials, pp. 1–3, 2007.

[50] C. O. Fritz, P. E. Morris, and J. J. Richler, “Effect size estimates:
Current use, calculations, and interpretation.” Journal of experimental
psychology: General, vol. 141, no. 1, p. 2, 2012.

[51] J. Gallier, Geometric methods and applications: for computer science
and engineering. Springer Science & Business Media, 2011, vol. 38.

[52] Y. Hanmo, W. Zan, C. Junjie, L. Shuang, and L. Shuochuan,
“Regression fuzzing for deep learning systems,” in 2023 IEEE/ACM
45nd International Conference on Software Engineering (ICSE), 2023.

[53] Y. Chenyuan, D. Yinlin, Y. Jiayi, T. Yuxing, H. Li, and L. Zhang,
“Fuzzing automatic differentiation in deep-learning libraries,” in 2023
IEEE/ACM 45nd International Conference on Software Engineering
(ICSE), 2023.

[54] M. Li, J. Cao, Y. Tian, T. O. Li, M. Wen*, and S.-C. Cheung*, “Comet:
Coverage-guided model generation for deep learning library testing,”
ACM Trans. Softw. Eng. Methodol., feb 2023, just Accepted.

[55] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “TensorFuzz:
Debugging neural networks with coverage-guided fuzzing,” in
Proceedings of the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97, 09–15 Jun 2019, pp. 4901–4911.

[56] X. Zhang, J. Liu, N. Sun, C. Fang, J. Liu, J. Wang, D. Chai, and
Z. Chen, “Duo: Differential fuzzing for deep learning operators,” IEEE
Transactions on Reliability, vol. 70, no. 4, pp. 1671–1685, 2021.

[57] Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang,
“Prioritizing test inputs for deep neural networks via mutation analysis,”
in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), 2021, pp. 397–409.

381

