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Abstract—Safety analysis is a crucial process in developing
safety-critical systems, allowing the identification of potential
design issues that may lead to hazards. Automation of this
process has become the focus of research in the critical
system domain due to the growing complexity of systems.
This paper proposes a Component Fault Trees (CFTs) based
Failure Mode and Effects Analysis approach for Architecture
Analysis and Design Language (AADL) models. First, we
propose a methodology for directly generating CFTs from
AADL models to display the overall failure behavior of the
system. Then we extend the Error Model Annex Version 2
(EMV2) with DFMEA property to express the assessment
criteria of error formally, and conduct Design Failure Mode
and Effects Analysis (DFMEA) whose core step is guided
by CFTs. We discuss our approach with its tool support and
evaluate its applicability in driving the design of safety-critical
systems through a case study.

Keywords–AADL; EMV2; Component Fault Trees; Failure
Mode and Effect Analysis; Safety Analysis

1. INTRODUCTION

Safety analysis is a systematic approach to identify and eval-
uate potential safety issues to ensure the safety of the system
[1]. As the number and complexity of electrical and electronic
systems increase, safety analysis is encountering more signifi-
cant challenges in development activities in various industries,
such as the preliminary assessment of system safety in the
aerospace industry (SAE ARP4761 [2]) and functional safety
analysis in the automotive electronics industry (ISO 26262
[3]). This situation results in safety requirements having the
same priority as the functional requirements of the system.
Approaches such as Fault Tree Analysis (FTA), Failure Modes
and Effects Analysis (FMEA), Failure Modes Effects and
Diagnostics Analysis (FMEDA) are often combined to assess
system risks [4]–[7]. The ISO 26262 standard requires de-
ductive and inductive methods for safety analysis in system
development, and recommends FMEA and FTA, respectively.
These safety analysis methods should be performed in the
early stages, together with design activities. They are con-
sidered one of the most valuable parts of the development
process.

Although model-based approaches to safety analysis were
introduced in the early 2000s [8], [9], the application of the
method is still performed manually due to the high subjectivity
of the practitioner, which often leads to incomplete analysis.
Furthermore, changes in the system model need to conduct a
significant rework on the previous study, thus posing signifi-
cant challenges to manual efforts.
To simplify the safety analysis process and improve the
manageability of analyzing complex systems, Architecture
Analysis and Design Language (AADL [10]) and Error Model
Annex Version 2 (EMV2 [11]) provide formal and automated
support for the design and analysis of safety-critical systems.
Several safety analysis tools, such as Functional Hazard As-
sessment (FHA), Fault Tree Analysis (FTA) and Fault Impact
Analysis (FIA), have been implemented in the Open Source
AADL Tool Environment (OSATE [12]) to automatically
analyze the Architecture Error Model (AEM), i.e., the core
AADL architecture models enhanced with EMV2 error models
[13]. This way of conducting multiple safety analysis methods
on the same model avoids repeated modeling and improves the
efficiency of safety analysis. However, several shortcomings
of these safety analysis tools could be improved, which
include inadequate quantitative analysis of failure causes and
incomplete examination of failure effects.
To mitigate the above challenges, this paper presents an auto-
mated Design Failure Mode and Effects Analysis (DFMEA)
method for AADL models, an improved FMEA method with
seven-step. The key step in DFMEA, named failure analysis,
is guided by the Component Fault Trees (CFTs), in which
smaller fault trees for each system component are created and
combined in a hierarchical network structure according to the
system architecture [14]. The CFTs offer an effective way
for DFMEA to analyze failure effects from error propagation,
error behavior of components, and compositional abstraction
of system error behavior in terms of its subsystems. Moreover,
unlike the traditional FMEA method, DFMEA introduced
Action Priority (AP) instead of Risk Priority Number (RPN)
to prioritize the risk of failure cause. Hence, DFMEA allows
engineers to pay attention to components with high AP at the
design phase and iterate or refine the architectural model. We
discuss our approach with its tool support and evaluate its
applicability in driving the design of safety-critical systems
through a simple self-driving system.
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Our contributions are summarized as follows:

1) Proposing a methodology for the direct generation of CFTs
to display the overall failure behavior of AEM.

2) Extending the EMV2 with DFMEA property to express the
assessment criteria of error.

3) Illustrate an approach that can automatically implement
DFMEA based on CFTs to generate DFMEA reports and
assess system risks.

4) Integrating our approach and tool support in the current
practice of safety-critical systems engineering.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work. Section 3 briefly introduces the DFMEA
framework and AEM via a case study. Section 4 provides the
method of extracting CFTs from AEM. Section 5 details the
automated DFMEA generation. Section 6 evaluates the appli-
cability and completeness of the tool through a simple self-
driving system. Section 7, concludes this paper and highlights
future work.

2. RELATED WORK

Existing work based on EMV2 partially addresses the automa-
tion of FMEA. For instance, Larson et al. [15] demonstrated
the effectiveness of using an AADL error model for safety
Analysis, such as FTA, FIA, and FHA, in a medical device.
Both Gu et al. [16] and Liu et al. [17] proposed to extend the
Error Model Annex with the FMEA property to implement
the quantitative FMEA method. However, these methods only
utilize error propagations defined in EMV2 for analysis, which
cannot reflect the overall system failure behavior, resulting in
incomplete and inadequate results of the FMEA table.
In addition, a mixed approach of FMEA and FTA can be
applied. Shafiee et al [18]. and Hidayat et al. [19] proposed
an integrated FTA and FMEA model. They start the analysis
with an FTA followed by an FMEA to improve the quality of
systems. Peeters et al. [20] proposed a method in which both
FTA and FMEA are recursive to focus on the most critical
parts of complex systems. These ideas are interesting because
they combine both methods’ strengths to evaluate the system
risk.
Nevertheless, Kabir et al. [21] discussed that the CFTs model,
which is a modular version of the fault tree that extends
classical fault trees by using real components in the tree
structure, can be more closely synchronized with the system
model than classical FTA. They followed up with a model-
based Bayesian Networks generation process to evaluate the
reliability of systems [22]. Berres et al. [23] described an
approach to generate fault trees automatically by CFTs. Munk
et al. [24] also present a semi-automatic safety analysis and
optimization process that performs FTA and DFMEA consis-
tent with the model by constructing CFTs. All failure behavior
of each component can be described by its CFT. Therefore, our
work focuses on the automatic generation of CFTs to conduct
a complete DFMEA for AADL models.

Figure 1. Overview of the BSCU in the WBS

3. DFMEA FRAMEWORK FOR AADL MODELS

This section first gives an overview of the AADL and EMV2.
Then we briefly introduce the CFTs and DFMEA method. Fi-
nally, the DFMEA framework for AADL models is proposed.

3.1 AADL and EMV2

The Architecture Analysis and Design Language (AADL) is
an effective model-based systems engineering tool for spec-
ifying formal architecture in highly integrated systems [10].
AADL can model and describe functional and non-functional
properties of embedded hardware and software. It allows for
early analysis and verification of systems during development.
The aircraft wheel brake system (WBS), as an example to
describe how the AADL and EMV2 support the safety as-
sessment processes and techniques presented in SAE Standard
ARP4761 [25], has a brake system control unit (BSCU) that
interfaces with the other components and provides commands
to the hydraulic pressure, anti-skid system, braking system and
annunciation to the pilot. Figure 1 illustrates the AADL graph-
ical component notation for the BSCU. The BSCU contains a
Select Alternate output data that indicates whether we should
use the first subsystem (Select Alternate == false) or if the
second (backup) subsystem would be used (Select Alternate
== true). The two redundant bscu subsystem each contain a
com and mon unit. com units produce data from the pedal
values, and mon units indicate if the values are valid or
not. AADL provides the connection keyword to connect the
subcomponents in a composite system. Figure 2 shows the
AEM of bscu subsystem. In this and the next section, we use
the bscu subsystem as the primary illustration because it is
relatively simple while still enough to illustrate DFMEA.
Error Model Annex Version 2 (EMV2) extends the core
AADL with an annex mechanism to support the modeling
of component error behavior. It automates safety analysis
methods by supporting them with an analyzable architectural
error model [11]. EMV2 supports architecture error modeling
at three levels of abstraction that focus on error propagation,
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system bscu_subsystem 
features 

  pwr:   requires bus access common::power.generic; 
  pedal:   in data port common::command.pedal; 
  cmd_skid:  out data port common::command.skid; 
  cmd_brk:  out data port common::command.brake; 
  valid:   out data port Base_Types::Boolean; 
end bscu_subsystem; 
system implementation bscu_subsystem.generic 

subcomponents 
  mon:   process monitor.i; 
  cmd:   process command.i; 

connections 
  pedaltocmd:  port pedal -> cmd.pedalvalue; 
  brakecmd:  port cmd.brake -> mon.brake; 
  brakecmd_ext:  port cmd.brake -> cmd_brk; 
  skidcmd_ext:  port cmd.skid -> cmd_skid; 
  skidcmd: port cmd.skid -> mon.skid; 
  isvalid:  port mon.valid -> valid; 

annex EMV2 {** use types error_library; use behavior error_library::simple; 
 error propagations 
  pwr:  in propagation {NoPower}; 
  valid:  out propagation {NoValue,NoPower}; 
 end propagations; 
 component error behavior 
  transitions 
  t1: Operational -[pwr {NoPower}]-> Failed; 
  propagations 
  p1: Failed -[]-> valid {NoValue}; 
 end component; 
 composite error behavior 
  states 
  [mon.failed and cmd.failed]-> Failed; 
  [mon.operational and cmd.operational]-> Operational; 
 end composite;   

**}; 
end bscu_subsystem.generic; 

Figure 2. Architecture Error Model of bscu subsystem

component error behavior, and composite error behavior. It
also allows combining error behavior specifications to facili-
tate incremental and extensible automated safety analysis. For
more detailed architecture error modeling, please refer to [11].
As seen in Figure 2, bscu subsystem includes an error propa-
gations specification that can propagate NoPower and NoValue
error type through the out data port valid, and receive NoPower
error type through bus access pwr. Component error behavior
is regarded as a state machine with an Operational and a
Failed state. An incoming propagation pwr{Nopower} triggers
the transition to the Failed state. Composite error behavior
shows that bscu subsystem remains Operational as long as
subcomponents mon and cmd are both in operational, but
Failed when both subcomponents are failed.

3.2 Component Fault Trees

Component Fault Tree (CFT) [14], a modular version of the
classical fault tree, is a Boolean model associated with real
components in the system structure. In the CFTs approach,
smaller fault trees for each system component are created
and combined in a hierarchical structure following the system
architecture. This enables closer synchronization of CFTs with
the system model [21].
In CFTs, a separate CFT element is attached to a component.
CFT utilizes output failure modes to model visible failures at
the specific component output port. Input failure modes are
used to model the failures the component input port receives.
Internal failure modes stand for failures that can occur inside
the component. CFT uses Boolean gates, such as AND and OR
gates, to model the failure conditions that describe how input

Figure 3. CFT of bscu subsystem.generic

and internal failure modes influence the output failure modes.
After modeling the CFT elements of each component, they
are arranged in a hierarchical order according to the system
architecture, which results in a CFTs model of the whole
system. Due to the powerful expression of EMV2, we can
define the failure behavior of each component in its EMV2
annex and extract its CFT. Figure 3 show the CTF element
of system implementation bscu subsystem.generic. The details
process of DFMEA are presented in Section 4.

3.3 Design Failure Modes and Effects Analysis

Failure Modes and Effects Analysis (FMEA) is a ”bottom-up”
inductive analysis focusing on technical risks by analyzing
system components individually during the design phase to
identify and prioritize all potential failure modes based on their
impact. This method helps take necessary measures in advance
to improve product safety and reliability. The risk score for
each failure mode is obtained by multiplying the individual
scores for three risk factors:
• Severity (S): represents the severity of the failure effect.
• Occurrence (O): represents the frequency of the failure

cause.
• Detection (D): represents the detectability of the failure

causes and failure modes that have occurred.
This composite risk, called “Risk Priority Number (RPN), ”
is calculated by RPN = S × O ×D. S, O, and D are rated
1-10, with 10 being the highest risk level.
The Automotive Industry Action Group (AIAG) and the
Verband Der Automobilindustrie(VDA) have integrated their

TABLE I
AP MATRIX OF DFMEA

1
8-10 L L M M M H H H H H H H H H H
6-7 L L L L M M M M H H H H H H H
4-5 L L L L L L M M M M H M H H H
2-3 L L L L L L L L L M M L L M H
1 L L L L L L L L L L L L L L L

1-10 1-4 5-10 1 2-4 5-6 7-10 1 2-4 5-6 7-10 1 2-4 5-6 7-10

S

D

2-3 4-6 7-8 9-10

O
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FMEA methods and proposed Design FMEA (DFMEA) to
improve the efficiency and accuracy of FMEAs [26]. The
main change in this DFMEA approach is a comprehensive
revision of the Severity (S), Occurrence (O), and Detection (D)
sheet, and the introduction of Action Priority (AP) to prioritize
actions for improvement.
The AP classifies system risks as High, Medium, or Low
priority according to the AP matrix that gives the most weight
to severity, some weight to occurrence, and the least weight to
detection, as shown in Table I. The disadvantage of the RPN
approach is that it multiplies S, O, and D with the same weight,
and a low severity problem may be addressed before one with
a much higher severity [27]. Using RPN, two problems with
the same RPN would have the same priority, even when one
has a high severity rating and the other with a high detection
rating. With AP, the one with the higher severity rating would
be addressed first [26].
The DFMEA analysis process consists of seven steps, as
illustrated in Figure 4. The details of each step and its
implementation for AEM are further described in Section 5.

3.4 Overview of DFMEA Framework

To automatically conduct a complete DFMEA, we propose
a novel generation approach to make DFMEA an essential
process in the evaluation phase of the system design life
cycle. Figure 5 illustrate the DFMEA framework for AADL
Models. We extended EMV2 with DFMEA property to express
evaluation criteria and optimization information of failure
elements in the component. During the system evaluation
phase, the DFMEA tool automatically generates CFTs for the
AEM and displays the result as a fault net diagram. Then,
the failure analysis step of the DFMEA process is guided by
CFTs, and the DFMEA table is output as the result of the

1. Planning and
Preparation

2. Structure 

Analysis

3. Function 

Analysis

4. Failure 

Analysis

5. Risk

Analysis

6. Optimization

7. Results
Documentation

System
Subsystem1

Subsystem2

Component1

Component2

Function1

Function2

Function1

Function2

Function1

Function2

failure1

failure2

failure1

failure2

Failure mode1

Failure mode2

failure1

failure2

Failure mode
Failure effect

Failure effect

Failure cause

Failure cause

Failure mode1

Failure mode2

Failure mode1

Failure mode2

Severity (S)  Occurrence (O) Detection (D)

Prevention Control (PC) Detection Control (DC)

AP

Lower O Lower D

Optimized PC Optimized DC

Lower AP

FMEA Table

Project Planning

Figure 4. DFMEA Seven Step Process
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Error
Model

System
Plan

System
Design

System
Evaluation

AEM Instance File

System
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CFTs Generation

Data Process
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System
Model

DFMEA Table

Refine

DFMEA
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Figure 5. DFMEA Framework for AADL Models

DFMEA process. DFMEA table and fault net diagram can
be used to evaluate system risk. Based on the characteristics
of AADL and EMV2, the model can be refined efficiently
because the unmodified parts of the model can be inherited in
the refinement step [11].

4. COMPONENT FAULT TREES MODELING

In this section, we present an approach to extract CFTs from
AEM. Figure 6 shows a flowchart of the proposed approach.
We first show how to model a CFT element based on the
EMV2 annex of a component, and then show how the CFT
is arranged to demonstrate failure causality across the whole
system.

4.1 Extract CFT from AEM

We first extract and store the information of the subcompo-
nents in AEM and the system itself in the component list.
When a component is chosen to be modeled, A query is made
to the CFT library database to determine whether the CFT of
this component’s implementation is available in the library. For
example, monitor.i is a implementation of the subcomponent
mon in Figure 2. If a model is not found in the library,
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Delete
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Component List

Figure 6. Flowchart of the Generation of CFTs

the implementation of the component is analyzed. Firstly,
the analysis identifies whether the component is simple or
composite. A component is considered a composite component
containing subcomponents. These subcomponents should also
be stored in the Component list to analyze their CFT.
For a simple component implementation, error propagation
and component error behavior of EMV2 can define the failure
behavior. The analysis identifies the possible internal failure
modes of the component through the error event, and deter-
mines its input and output failure modes through error prop-
agation. These failure modes could be of different error types
such as NoValue, NoService, and Nopower. Figure 7 shows
the EMV2 annex example of the components implementation
named monitor.i and command.i. Among them, monitor.i has
four input failure modes, one internal failure mode, and one
output failure mode, while command.i has three input failure
modes and two output failure modes. error states defined in the
component error behavior are also considered failure modes.
We create unique Event nodes that represent these failure
modes in the CFT. transitions in component error behavior
can be analyzed to link input failure mode Events and internal
failure mode Events to the error state Events. Internal and input
failure modes can be used in conditional square brackets (”[]”)
as a single element or as a combination of Boolean expressions
Multiple transitions with single element transition conditions
from the initial error state (Opertional in this example) to the
same error state (Failed in this example) means that the Events
of these single condition element are connected to the error

state Event through an Or gate. Suppose a Boolean expression
is expressed in the condition square brackets. In that case, an
intermediate Event is created with the corresponding Boolean
gate, which acts as a bridge connecting the Events participating
in the operation and the target Event. Similarly, propagations
in component error behavior can be analyzed to link error
state, input, and internal failure modes Events to the output
failure modes Events. The propagation condition is usually
empty, indicating that the component will output an error
directly when it fails. Error state and output failure modes
Events are directly connected through hidden OR gate logic.
If the propagation condition is not empty, then an intermediate
Event with priority And logic gate will be created to connect
the error state Event and condition Event to the target output
failure mode Event.
For a composite component, each subcomponent is also ex-
tracted to model its CFT separately following the process
mentioned above. Moreover, the composite component is
first analyzed as a simple component to build a CFT that
includes input, output, internal, and error state Events. Then
the error state Events of subcomponents will be connected
to the error state Event of the composite component through
an intermediate Event with corresponding Boolean logic in
composite error behavior mapping condition. Figure 3 shows
that bscu subsystem.generic fails when both subcomponent
mon and cmd have failed. EMV2 includes a consistency
checker to ensure that both specifications (composite error
behavior and component error behavior) are consistent [13].
Whenever a new CFT of a component implementation is
created, it is saved in the CFT library to facilitate future reuse.
The above process is followed when a component implemen-
tation’s failure behavior is not found in the library. However, if
the CFT is available in the library, it is extracted and renamed
its events to the name of this component. For example, there
are two redundant subsystems sub1 and bscu2 in BSCU, both
of which use the implementation of bscu subsystem.generic.
When the CFT of bscu subsystem.generic is modeled and
stored in the CFT library, sub1 and sub2 can efficiently es-
tablish corresponding CFT by copying the CFT and renaming
its events with their own name.

4.2 Component Fault Trees Composition

The constructed CFT of each component is stored in the
CFT collection to prepare for the CFTs model composition.
Once the CFT models for all the components are created, the
approach composes them according to their connection defined
in the architectural model. In this process, if the output of
component X is connected to the input of component Y, A
one-to-one connection is created between the X’s output and
corresponding Y’s input failure mode Events, which have the
same error type. Such connections guarantee the propagation
of failure from one component to another. Figure 8 illustrates
the composited CFTs of bscu subsystem.generic. The connec-
tion isvalid, brakecmd, skidcmd in Figure 2 contribute to the
three connections in CFTs. It should be noted that both ’cmd’
error state ’Failed’ and ’mon’ error state ’Failed’ are unique
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error propagations
processor: in propagation {SoftwareFailure, HardwareFailure};
brake: in propagation {NoValue};
skid: in propagation {NoValue};
valid: out propagation {NoValue};

end propagations;

component error behavior
events

InvalidReport: error event;
transitions

terrinvalidreport: Operational -[InvalidReport]-> Failed;
noskid: Operational -[skid {NoValue}]-> Failed;
nobrake: Operational -[brake {NoValue}]-> Failed;
terrfromplatformsoft: Operational -[processor {SoftwareFailure}]-> Failed;
terrfromplatformhard: Operational -[processor {HardwareFailure}]-> Failed;

propagations
p1: Failed -[]-> valid {NoValue};

end component;

error propagations
pedalvalue: in propagation {NoService};
brake: out propagation {NoValue};
skid: out propagation {NoValue};
processor: in propagation {SoftwareFailure, HardwareFailure};

end propagations;
            
component error behavior
transitions

terrfrompedal: Operational -[pedalvalue {NoService}]-> Failed;
terrfromplatformsoft: Operational -[processor {SoftwareFailure}]-> Failed;
terrfromplatformhard: Operational -[processor {HardwareFailure}]-> Failed;

propagations
p1: Failed -[]-> brake {NoValue};
p2: Failed -[]-> skid {NoValue};

end component;

EMV2 annex in process implementation monitor.i EMV2 annex in process implementation command.i

CFT of  monitor.i CFT of  command.i

Figure 7. EMV2 annex and its CTF of the components in bscu subsystem

bsuc_subsystem.generic

mon

cmd

Figure 8. Fault Net Diagram of bscu subsystem.generic

after building the CFT for cmd and mon, and will not be
created repeatedly but retain its connection relationship when
creating the CFT for bscu subsystem.generic.
This combination produces a CFTs model that represents the
failure behavior of the entire system. For comparison, we have
also used the FTA tool for the fault contributor trace analysis
of the same example. It can be seen in Figure 9 that, the
composite component behavior for bscu subsystem.generic is
missing from the FTA analysis results, and ’cmd’ error state
’Failed’ is repeated. Therefore, It can be concluded that the
CFTs model represents components’ complete failure behavior
and interaction without omitting any information.
Unlike classical fault trees, CFTs allow multiple top events

Figure 9. Fault Contributor Trace of bscu subsystem.generic

to be defined and create unique events corresponding to
system component failures. Therefore, CFTs look more like
a directed acyclic graph with a causal relationship between
system component failures. Moreover, safety analyses such
as FTA and FMEA can be conducted by tracing the causal
relationship guided by CFTs.

5. AUTOMATED DFMEA GENERATION

In this section, we first extend the EMV2 with the DFMEA
property. We then detailed each step of the DFMEA analysis
process and how the CFT models guided the DFMEA.
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Figure 10. AIAG-VDA DFMEA Form Sheet

property set DFMEA_Prop is

    Head: record (
        CompanyName: aadlstring; -- company name         
        EngineeringLocation: aadlstring;      -- engineering location     
        CustomerName: aadlstring;              -- customer name             
        ModelYearProgram: aadlstring;          -- model years/programs     
        Subject: aadlstring;                  -- subject                     
        DFMEAStartData: aadlstring;          -- DFMEA start date         
        DFMEARevisionData: aadlstring;          -- DFMEA revision date     
        CrossFuncTeam: aadlstring;              -- cross-functional team
        DFMEAID: aadlstring;                  -- DFMEA ID number         
        DesignResponsibility: aadlstring;      -- design responsibility    
        ConfidentialityLevel: aadlstring;      -- confidentiality level     
        FocusComponent: aadlstring;          -- focus component        
    )applies to (all);

    DFMEA: record (
        FailureDescription: aadlstring;         -- description of the failure mode
        Function:aadlstring;    -- description of the function violated by the failure mode
        Severity: aadlinteger 1 .. 10;         -- severity of failure effect
        PC: aadlstring;                         -- current prevention control of failure cause
        Occurrence: aadlinteger 1 .. 10;     -- occurrence of failure cause
        DC: aadlstring;         -- current detection control of failure cause/failure mode
        Detection: aadlinteger 1 .. 10;         -- detection of failure cause/failure mode)
    )applies to ({emv2}**error type, {emv2}**type set, {emv2}**error behavior state,
        {emv2}**error propagation, {emv2}**error event, {emv2}**error flow);

    Optimization: list of record (
        OptPC: aadlstring;                     -- DFMEA optimized preventive action
        OptDC: aadlstring;                     -- DFMEA optimized detection action
        ResponsPerson: aadlstring;             -- responsible person's name
        TargetCompletionData: aadlstring;     -- target completion date
        Status: aadlstring;                     -- status
        Evidence: aadlstring;                 -- action taken with pointer to evidence
        CompletionData: aadlstring;             -- completion date
        OptOccurrence: aadlinteger 1 .. 10;     -- optimized occurrence
        OptDetection: aadlinteger 1 .. 10;     -- optimized detection
        Notes: aadlstring;                     -- notes
    )applies to ({emv2}**error type, {emv2}**type set, {emv2}**error behavior state,
        {emv2}**error propagation, {emv2}**error event, {emv2}**error flow);
        
end DFMEA_Prop;

Figure 11. EMV2’s Extended Property Set DFMEA Prop

5.1 Error Model Annex extension

As shown in Figure 4, the DFMEA method considers system
structure, function, and risk analysis in the analysis steps,
leading to a more robust FMEA development process. The
DFMEA tool has been implemented as a plugin for OS-
ATE. The outcomes of the complete DFMEA analysis are
automatically generated in the DFMEA form sheet. Figure
10 displays the sheet template for DFMEA, where steps
3-6 contain additional information for analysis that needs
to be attached to the error element in EMV2. To conduct

system implementation integration.functional
    properties
    DFMEA_Prop::Head => [Subject => "Automotive System.";
                       DFMEAStartData => "2022/3/1"; DFMEARevisionData => "2023/3/1";
                        FocusComponent => "speed_ctrl";];
  annex EMV2 {**
    properties
    DFMEA_Prop::DFMEA => [FailureDescription => "Automatic driving function failure";
                         Function=>"Integrate information and output command";
                         Severity=>8; ] applies to FailStop;
            **};
    end integration.functional;

Figure 12. Example of using DFMEA Prop

a complete DFMEA analysis for AADL models, we have
defined a property set named DFMEA Prop shown in Figure
11, which offers additional information appended to the AADL
components and the error elements and supports the output of
complete DFMEA reports. The Head record can be used to
record planning and preparation information in step 1. The
DFMEA record can describe a failure mode by its function,
specific description, and initial risk assessment information.
The Optimization list of records can record the process of
multiple optimizations for a failure mode. The system designer
can use this property set by declaring ’with DFMEA Prop’ at
the beginning of an AADL file. Figure 12 shows how to attach
properties to the AADL components and the error elements.
It is essential to note that, the process of building CFTs does
not analyze these properties. Even without recording additional
information using the DFMEA Prop property set, the tool can
conduct structure and core failure analysis of DFMEA on the
AADL architecture error model.

5.2 DFMEA process for AADL Model

The DFMEA analysis process consists of seven steps, as
illustrated in Figure 4. In this subsection, we focus on im-
plementing each step of the DFMEA analysis process for the
AADL model.
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Step 1
This step includes forming a DFMEA team and compiling the
necessary documentation and resources. The DFMEA team
and project planning should be organized as a DFMEA sheet
header, as depicted in Figure 10(a). This information can
be completed as an aadlstring type within the Head record
of the DFMEA Prop property set and supplied to the top-
level system implementation in AADL, as illustrated in the
integration.functional implementation in Figure 12. In this
step, we should select a component as the Focus Component,
and the subsequent steps will revolve around it. The output
of step 1 renders the table head of the DFMEA report by
extracting the Head property attached to the AEM;

Step 2
In the structure analysis step, the model is subdivided into
systems, subsystems, and components by hierarchical relation-
ships and represented as a structure tree. From the AADL
architecture model, the FMEA structure tree can be automat-
ically generated by analyzing the subcomponents declarations
in component implementations. The output of step 2 will be
presented in the table of the step 1 column with the Focus
Component as the centre and its upper and lower components
on the left and right, respectively. The generated structure tree
is to be reviewed and discussed by the safety experts and the
function owners to improve the functional architecture of the
system.

Step 3
In the function analysis step, each structural element is an-
alyzed with regard to its functions in the system. A func-
tion net describes the interaction of the functions of several
structural elements. The failure modes are derived from the
functions of the components, which may include function
loss, function degradation, and unintended function. Figure 4
shows that the function net depicts the functional dependency
between components, while the failure net illustrates the causal
relationship between the failure modes of each component.
Typically, the failure analysis follows the function analysis.
Both processes are performed independently, which may lead
to inconsistencies between the two analysis outcomes. Two
failure modes with a causal relationship in the failure net may
have no dependency relationship in the function net.
In general, the failure of a function will inevitably fail other
components’ functions that depend on it, which is similar
to the propagation of the failure. Therefore, our method
first assigns functional properties to the corresponding failure
elements through DFMEA record in DFMEA Prop, so that
the corresponding Events in the CFTs represent the failure
of this function. For example, FailStop is the failure of the
function ”the car can safely perform automatic driving” as
illustrated in Figure 12. It should be noted that the input
failure modes of the components are not considered as the
failure of the component’s function, and different failure
modes may violate the same function. After the corresponding
Events have been assigned function properties, the functional

A.F1

B.F1 C.F1

D.F1 D.F2 E.F1

A.F2

B.F2

D E

A

B C

Function Net of the CFTs

A.F1 A.F1

B.F1 C.F1

D.F1 D.F2

E.F1

A.F2

B.F2

D E

A

B C

CFTs Model
where some events are

assigned functional properties

Figure 13. Example of converting CFTs to Function Net

dependencies between components can be presented in CFTs.
Figure 13 illustrates an example of converting the CFTs model
to function net.
The function net can be converted from CFTs through the
following two steps:
1) Events without function properties in CFTs are removed,

and the incoming and outgoing edges of this Event are
directly connected. These edges are also removed if the
Event only has incoming or outgoing edges.

2) Events that violate the same component’s function are
merged, and their connections to other events are pre-
served.

The output of step 3 will list all functions of the Focus
Component as well as the dependent relationship with other
component functions. Similar to the previous step, the result
needs to be reviewed and discussed in order to improve the
requirements, the structure tree, and the function net.

Step 4
The fourth failure analysis step requires us to build the failure
net to analyze the effects and causes of the failure modes
in the Focus component. From the perspective of the Focus
Component, failure modes that cause the component to enter
the failure mode are considered failure causes. In contrast,
failure modes affected by the Focus Component’s failure mode
are considered failure effects. As discussed in Section 4, The
CFTs model is a directed acyclic graph that reflects failure
causality among system components. Therefore, The CFTs
model of the system implementation can be used as the failure
net for this step analysis. It should be noted that the FMEA
typically considers only single failures. However, benefiting
from the Boolean logic in CFTs, we can also generate causality
between failures connected with one or more AND gates.
Multiple failure modes of a component violating the same
function and the corresponding failure causes and effects are
displayed on the same line as the function output in step 3.
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Figure 14. AADL Model of Self-Driving Car System

Step 5
In the risk analysis, it is necessary to evaluate each failure
mode, failure cause, and failure effect for Focus Component
to assess the risk. The DFMEA record in Figure 11 can also
assign relevant risk analysis information to the respective error
elements. Factor S can be assigned to the failure effects, and
factors O and D can be assigned to the failure causes. Take
Figure 12 as an example. The S=8 is assigned to the FailStop
error state of integration.functional; For a failure cause, the
effects of the failure can be obtained by failure analysis. To
assess the AP value for a failure cause, we used the largest S
of its failure effects in combination with its own O, D.

Step 6
The objective of the optimization step is to develop actions
that reduce risk by improving the product. Suppose satisfactory
results are not achieved during the review of the effectiveness
of current measures or the risk assessment. In that case,
further preventive and detection measures can be developed
to reduce O and D, thus reducing the assessment level of the
AP. The optimization step can be performed multiple times,
and relevant information can be assigned to the relevant failure
causes through the Optimization record list property.

Step 7
An FMEA process is not finished until step 7 has been com-
pleted. This step involves documenting results, summarizing,
reporting, and communicating. The FMEA tool automatically

generates an EXCEL report that contains the analysis results
of the first six steps.
Each time the AEM is changed or extended, requirements
or optimization are added or modified. The DFMEA process
can be repeated immediately, since DFMEA reports and the
CFTs model are generated automatically. Therefore, the effects
of changes in the AEM are directly visible in the generated
DFMEA report and CFTs. AEM is always consistent with
DFMEA and CFTs This automatic safety analysis method
allows a faster and earlier safety assessment of the system.
The automated DFMEA process relies on the CFTs model
which can provide a more complete description of system
faults as discussed in Section 4. One might still get an
incomplete FMEA that lacks detail due to incorrect error
modeling. Therefore, it’s essential to use our automated tools
as aids in the analysis process and to complement them with
expert judgment to ensure a thorough and reliable assessment
of system reliability and safety.

6. CASE STUDY: A SIMPLE SELF-DRIVING CAR SYSTEM

The book AADL in Practice provides a practical guide on
using AADL for analyzing system latency and safety [28].
It includes a case study of an automotive system and demon-
strates complete architectural modeling and error modeling for
simple self-driving cars. This case study is easy to understand
and therefore is utilized as an example to illustrate the DFMEA
process and showcase the function of the DFMEA tool.
Figure 14 presents a graphical representation of the AADL
model for a self-driving car system. The AEM of this system
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Figure 15. CFT of speed controller.i

TABLE II
FUNCTION AND ERROR ELEMENTS

Component Name Function Failure Description Error element
integration.system The car can safely perform automatic driving Automatic driving function failure FailStop

acceleration Accelerates according to the acceleration command Unable to accelerate due to abnormal acceleration command FailStop
Unable to conduct speed control FailStop

Loss of braking command brake_cmd.ItemOmission
Loss of acceleration command speed_cmd.ItemOmission

Invalid braking command brake_cmd.OutOfRange
Invalid acceleration command speed_cmd.OutOfRange

Send warning information in emergency situations Loss of warning information warning.ItemOmission
Determines whether there is an actual obstacle on the road Obstacle recognition failure FailStop

Output the obstacle position Loss of obstacle_position obstacle_position.ItemOmission
Eliminates potential bad values, and outputs a consistent speed value Unable to handle and output the correct speed FailStop

Loss of speed from speed voter speed.ItemOmission
Invalid speed from speed voter speed.OutOfRange

obstacle_camera Sends the raw picture to a software component Loss of picture from the camera picture.itemomission
Loss of information from the Radar distance_estimate.ItemOmission
Invalid distance sent by the radar distance_estimate.OutOfRange
Invalid value from wheel sensor speed.OutOfRange
Loss of speed from wheel sensor speed.ItemOmission
Invalid value from laser sensor speed.OutOfRange
Loss of speed from laser sensor speed.ItemOmission

speed_ctrl

obstacle_detection

speed_voter

obstacle_radar

wheel_sensor

laser_sensor Indicates the vehicle speed

Indicates the vehicle speed

Detects an obstacle on the road

Output the correct speed to the controller

Calculate a reasonable acceleration deceleration command

Integrate information and output command

is described in detail in [28], [29]. The system is designed
to detect obstacles on the road by capturing images while
in operation. Two speed sensors, namely the wheel sensor
and laser sensor, detect the car’s actual speed and initiate the
acceleration or braking functions accordingly. The car activates
the brakes if an obstacle is detected through the obstacle radar
or camera. On the other hand, if no obstacle is detected,
the acceleration function can be activated. The speed and
brake commands are controlled by process speed ctrl whose
implementation is speed controller.i, and Figure 15 shows the
CFT element of speed controller.i. Moreover, the car features
entertainment functions and a screen that provides feedback
to the passenger. The passenger can also set the desired speed
using a panel.

Table II defines the functions and corresponding error el-
ements of some components in the system. We can see
that the speed ctrl component has three functions. The er-
ror state (FailStop) and two outgoing error propagations
(brake cmdItemOmission and speed cmdItemOmission) are
the failure of function ”Integrate information and output
command.” integration.system is the implementation of the
self-driving car system, whose functions can be regarded as
security goals. It will fail in FailStop state when both sub-
component acceleration and brake fail in FailStop state. We
assign these function and failure descriptions to corresponding

error elements through DFMEA Prop property. Then we can
conduct automatic DFMEA analysis on the AEM of self-
driving car system with speed ctrl as the Focus Component.

Table III and IV show the partial DFMEA reports. The step
2 column shows three threads that are the subcomponent
of speed ctrl. One of the component’s functions, ”Integrate
information and output command,” is shown in the step
3 column. This function relies on the functions of obsta-
cle detection and speed voter, and support for the function
of component acceleration to achieve the safety goal of
integration.system. Step 4 column shows the failure analysis
of speed cmdItemOmission. The failure modes in the table
are represented by corresponding failure descriptions in Table
II. This failure mode will lead to the failure of acceleration
(S=7) and cause system failure (S=8). For better presentation,
the right-hand side of step 4 only lists the initial failure causes
that may have contributed to this failure mode. The largest S
among failure effects is 8, which is used to evaluate the AP
for these failure causes in step 5. We can see that failures of
obstacle camera and obstacle radar have a high AP value,
which indicate that certain failure modes have a significant
impact and are likely to occur. To reduce the system risk,
these failure modes need to be prioritized in the optimization
steps by adding effective preventive measures and detection
protocols.
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TABLE III
PORTION OF DFMEA REPORT

1. Next Higher Level 2. Focus
Element

3. Next Lower Level
or Characteristic Type

1. Next Higher Level
Function and Requirement

2. Focus Element
Function and
Requirement

3. Next Lower Level
Function and

Requirement or
Characteristic

1. Failure Effects (FE) to the
Next Higher Level Element

and/or End User

Se
ve

rit
y 

(S
)

of
  F

E

2. Failure
Mode (FM)
of the Focus

Element

3. Failure Cause (FC) of the Next
Lower Element or Characteristic

speed_ctrl.brake_thr >>>>>"obstacle_camera" :
Loss of picture from the camera

speed_ctrl.accel_thr >>>"obstacle_radar" :
Loss of information from the radar

>>>"wheel_sensor" :
Loss of speed from wheel sensor

>>>"laser_sensor" :
Loss of speed from laser sensor

speed_ctrl.warning_thr

<"integration_functional"
: The car can safely
perform automatic

driving

"speed_voter" :
Output the correct

speed to the controller

<<"integration_functional" :
Automatic driving function

failure
8

integration_functional speed_ctrl

"acceleration" :
Accelerates according to

the acceleration command Integrate
information and
output command

"obstacle_detection" :
Output the obstacle

position

<"acceleration" :
Unable to accelerate due to

abnormal acceleration
command

7

Loss of
acceleration
command

STRUCTURE ANALYSIS (STEP2) FUNCTION ANALYSIS (STEP3) FAILURE ANALYSIS (STEP4)

TABLE IV
CONTINUED TABLE OF TABLE III

 (STEP4)

3. Failure Cause (FC) of the Next
Lower Element or Characteristic

Current Prevention
Control (PC) of FC

O
cc

ur
re

nc
e 

(O
)

of
 F

C Current Detection (DC)
of FC or FM

D
et

ec
tio

n 
(D

)
of

 F
C

/F
M

D
FM

EA
 A

P

DFMEA Preventive
Action DFMEA Detection Action

Se
ve

rit
y 

(S
)

O
cc

ur
re

nc
e 

(O
)

D
et

ec
tio

n 
(D

)

D
FM

EA
 A

P

>>>>>"obstacle_camera" :
Loss of picture from the camera NONE 6 NONE 6 H Automatic calibration

of the camera Real-time monitoring 8 4 4 M

>>>"obstacle_radar" :
Loss of information from the radar NONE 6 NONE 6 H Automatic calibration

of the radar Real-time monitoring 8 4 4 M

>>>"wheel_sensor" :
Loss of speed from wheel sensor NONE 5 NONE 6 M Data redundancy Fault diagnosis 8 3 4 L

>>>"laser_sensor" :
Loss of speed from laser sensor NONE 5 NONE 6 M Data redundancy Fault diagnosis 8 3 4 L

DFMEA RISK ANALYSIS (STEP5) DFMEA OPTIMIZATION (STEP6)

7. SUMMARY AND PERSPECTIVES

This paper proposes a CFTs model based FMEA method
for AADL models. We propose a methodology for directly
generating CFTs from AADL models to display the overall
failure behavior of the system. The CFTs model represents
components’ complete failure behavior and interaction without
omitting any information. Safety analyses such as FTA and
FMEA can be conducted by tracing the causal relationship
guided by CFTs. We extend the EMV2 with DFMEA property
to formally express the assessment criteria of error. The
proposed DFMEA process guide by CFTs is well integrated
into the system design life cycle. The effects of changes
in the AEM are directly visible in the DFMEA report and
CFTs generated, and AEM is always consistent with DFMEA
and CFTs. This automatic safety analysis method allows a
faster and earlier system safety assessment. We discuss our
approach with its tool support and evaluate its applicability
in driving the design of safety-critical systems through a case
study. The analysis results of DFMEA provide designers with
a comprehensive view of system failures and can complement
and optimize the system design.
In our future work, we aim to expand the safety analysis
methods available for the AADL model. Specifically, we plan
to utilize Bayesian Network analysis to identify the most
critical failure causes among the essential items identified by
DFMEA. Additionally, we intend to implement FMEDA in
AADL, enabling the quantitative analysis of random hardware
failures in the system.

LIST OF ABBREVIATIONS

AADL Architecture Analysis and Design Language
AEM Architecture Error Model
AP Action Priority
BSCU Brake System Control Unit
CFT Component Fault Tree
DFMEA Design Failure Mode and Effects Analysis
EMV2 Error Model Annex Version 2
FHA Functional Hazard Assessment
FIA Fault Impact Analysis
FMEA Failure Mode and Effects Analysis
FMEDA Failure Modes Effects and Diagnostic Analysis
FTA Fault Tree Analysis
OSATE Open Source AADL Tool Environment
RPN Risk Priority Number
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