
intCV: Automatically Inferring Correlated Variables in Interrrupt-Driven Program

Chao Li1,2, Zhixuan Wang1,3, Rui Chen1,2,∗, and Mengfei Yang4
1Beijing Sunwise Information Technology Ltd, China

2Beijing Institute of Control Engineering, China
3Xidian University, China

4China Academy of Space Technology, China
lichao@sunwiseinfo.com, wangzhixuan@sunwiseinfo.com, chenrui@sunwiseinfo.com, yangmf@bice.org.cn

*corresponding author

Abstract—Interrupt-driven programs are extensively employed
in safety-critical areas such as aerospace, autonomous driving,
and medical equipment. Nevertheless, the uncertainty of
interrupt preemption may result in concurrent bugs. Among
these concurrent bugs, atomicity violations are critical and
challenging to detect. Existing methods mostly concentrate on
predicting or detecting single-variable atomicity violations but
fail to address the more intricate multi-variable atomicity vio-
lations. In real-world programs, many variables are inherently
correlated and must be accessed together with their correlated
peers consistently. To significantly improve the ability of
techniques in inferring correlated variables, this paper conducts
an empirical study on real-world software to understand the
manifestation characteristics of variable correlations. Building
upon this foundation, an automated method called intCV, based
on the XGBoost model, is introduced to effectively infer
correlated variables within interrupt-driven programs. Once
we accurately identify the correlated variables requiring atomic
execution, existing detection techniques can be utilized to
identify violations of multi-variable atomicity. Experimental
results on real-world aerospace embedded software demonstrate
the practicality and effectiveness of our method.

Keywords–interrupt-driven programs; concurrency bugs; cor-
related variables; atomicity violations

1. INTRODUCTION

Interrupt-driven programs are widely utilized in safety-critical
areas such as aerospace, autonomous driving, and medical
equipment. In these programs, the main task continuously
responds to interrupt service routines (ISRs) and executes
interrupt functions to perform corresponding operations in real-
time [1]. As the triggering of interrupts is non-deterministic
and unpredictable, it can be challenging for programmers to
comprehend and develop interrupt-driven programs. If the
accesses of shared data are not properly synchronized or
protected, uncertain interleaving execution of interrupts may
cause concurrency bugs, resulting in severe safety issues.
According to [2], multi-variable atomicity is a typical category
of interrupt-driven concurrency bugs, accounting for approx-
imately 36% of the cases. The fundamental reason for this
type of bugs is that unsynchronized concurrent access violates
the semantic relationships between variables, making it the
most challenging category of concurrency bugs to detect [3].

In interrupt-driven programs, developers often use multiple
global variables to represent a single entity or a variable as a
custom synchronization flag to constrain another variable. These
variables are inherently correlated and need to be accessed
together in a consistent manner. Therefore, identifying variables
with semantic correlations is the most significant challenge in
detecting multi-variable atomicity violations.
Currently, a variety of techniques and tools exist for detecting
concurrency bugs in interrupt-driven programs. These methods
mainly focus on bugs caused by a single variable, such as
data races [4][5] and single-variable atomicity violations [6][7],
but they are unable to handle multi-variables concurrency bug
problem. There are a few bug detection methods for multi-
variable atomicity violations in threaded programs. However,
on the one hand, these methods only rely on a specific variable
correlation characteristics [8] or predefined access interleaving
patterns [9] to identify correlated variables, resulting in
low accuracy and difficulty in applying them to real-world
programs. On the other hand, due to differences in concurrency
mechanisms and programming practices, these methods are
challenging to apply to interrupt-driven programs.
In this paper, we introduce intCV to identify correlated variables
in interrupt-driven programs. We begin by summarizing the
characteristic of correlated variables involved in interrupt-driven
programs through a comprehensive empirical study. Subse-
quently, we extract the correlation features of variables through
static analysis from real-world aerospace embedded software
and construct training samples. Furthermore, with a deep
understanding and analysis of the software and collaborative
communication with developers, we label the genuine correlated
variable pairs and employ the SMOTE enhancement algorithm
[10] to balance the distribution of positive and negative samples.
Ultimately, we train a classifier using the XGBoost model to
facilitate the inference of correlated variable pairs.
To evaluate the proposed approach, we construct our dataset
based on the real-world aerospace embedded software from
the China Academy of Space Technology (CAST). The dataset
contains 23791 samples. We then conduct extensive experi-
ments ,and the results on two real-world aerospace embedded
software programs demonstrate that intCV outperforms existing
methods. Once we can accurately identify the correlated
variables that need to maintain atomic execution, existing
detection technologies can be employed to detect multi-variable
atomicity violations.

562

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

2693-9177/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS60937.2023.00061

In summary, this paper makes the following contributions:
• We study the characteristics of variables correlation within

interrupt-driven programs, which can serve as a robust
foundation for inferring correlated variables effectively.

• We introduced an automated technique for inferring
correlated variables, merging the capabilities of static
analysis with the XGBoost model.

• We implement the prototype tool intCV and evaluated
it on real-world embedded software to demonstrate the
effectiveness of the proposed technique. intCV is publicly
available at https://github.com//AceBce/intCV.

The rest of this paper is organized as follows. Background
and motivating examples are presented in Section 2. Section
3 describes the proposed approach in detail. The experiment
evaluation is given in Section 4. Section 5 reviews the main
approaches related to this work. Finally, we conclude the paper
and outline our future work prospects.

2. BACKGROUND AND MOTIVATION
2.1. Interrupt-Driven Program
Interrupt-driven programs represent a typical category of
concurrent programs, which mainly rely on the interrupt
mechanism of the embedded processor to achieve real-time
concurrent response. An interrupt-driven program consists of
one main task with an infinite loop structure and several
interrupt service routines (ISRs), where the main task cyclically
waits for the triggering of ISRs to carry on the corresponding
operation in real-time. Distinct from threaded or event-driven
programs, interrupt-driven programs feature an asymmetric
preemption relationship. Every ISR maintains a specific priority,
allowing only those of higher priority to preempt their lower-
priority counterparts and not vice versa. Furthermore, bare-
metal programming is quite common in the development of
interrupt-driven embedded software [11]. Given that embedded
software typically has limited memory, developers extensively
use global variables as shared data, facilitating communication
between tasks and interrupts while avoiding parameter and
calling stack usage. Since having few available native concur-
rency primitives, a large number of flag variables are used as
customized synchronization operations.

2.2. Multi-variable Atomicity Violation
In interrupt-driven programs, atomicity violations are the
most encountered interrupt concurrency bugs [13]. Previous
concurrency bug detection tools mainly focused on concurrency
bugs that involve only one variable, that is, only the atomicity of
instructions accessing the same variable. However, concurrency
bugs caused by unsynchronized access to multiple variables
are widespread in interrupt-driven programs. They actually
cause a significant percentage (about 36%) of concurrency
bugs [2]. We start with two real-world examples to understand
why there exist so many multi-variable atomicity violations in
interrupt-driven programs.
Figure 1 shows an example from a satellite software,
gTime.Second and gTime.MilliSecond represents the second and
millisecond of a certain moment that should be read/written

interrupt void int_M1553B_Interrupt(void)
{
……
S3:gTime.Second = second + ms / 1000;

S4:gTime.MilliSecond = ms % 1000;
……

}

Task ISR

preempt

return

void Ctrl_LSat_To_GSat_Orbit(void){
……
S1:tmpMs = gTime.Second * 1000 +

S2:gTime.MilliSecond +
gOrbit.LastCtrl_ms;
……

}

Figure 1: A multi-variable atomicity violation. gTime.Second
and gTime.MilliSecond represent minutes and seconds of a
specific time and should be read together. However, due to
interrupt preemption occurring between S1 and S2, tmpMs read
a wrong time.

together. However, the ISR may preempt between S1 and S2
and update the time. As a result, the value of gTime.Second read
by tmpMs is an old one while the value of gTime.MilliSecond
is a new one. Such inconsistency can lead to timing errors and
subsequent incorrect program behavior.
Figure 2 shows another case from a control software, variable
FLAG CAMERA A and variable TIME CAMERA A are corre-
lated since they are used in combination to control the camera’s
switch. In payload powerup() function, FLAG CAMERA A is
first set to 0X55 to signal the camera’s readiness for power-on
while simultaneously clearing TIME CAMERA A to initiate
the timer. In the ISR, when FLAG CAMERA A is found to
be 0X55, TIME CAMERA A is incremented until it reaches
a 5-second timer, triggering the camera power-up. However,
when interrupt preemption occurs between S1 and S2, the
camera startup timing error occurs.

void timer2_int(void) interrupt 5
{

......
/*Camera A delay 5s opening interface*/
S3:if(0x55 == FLAG_CAMERA_A)
{
S4:TIME_CAMERA_A =
TIME_CAMERA_A+20;
if(TIME_CAMERA_A>=0x1388)

{ // 0x1388 = 5000
FLAG_CAMERA_A= 0xAA;
TIME_CAMERA_A = 0;

}
}
......

}

Task ISRpreempt

return

void payload_powerup(void)
{

......
S1:FLAG_CAMERA_A = 0x55;

……//some process

S2:TIME_CAMERA_A = 0;
......

}

Figure 2: Another multi-variable atomicity violation. The
ISR interleaves Task’s update to FLAG CAMERA A and
TIME CAMERA A and reads inconsistent values. As a result,
The satellite camera was turned on at an incorrect time.

As we can see, the above bug is neither a race bug nor a
single-variable atomicity violation bug. Even if the accesses to
a single variable are well synchronized, the bug still exists. The
root cause of this type of bug is that unsynchronized concurrent
accesses violate the semantic relationship between variables.
In real-world interrupt-driven programs, developers often use

563

multiple variables, consciously or unconsciously, to simulate
correlations inherent in the real world. Such semantically
correlated variables must be either updated consistently or
accessed together to give the program a consistent view instead
of a partial one. Nevertheless, the execution may violate the
access correlation due to the preemption of ISR.

2.3. XGBoost

XGBoost, proposed by Chen and Guestrn in 2016 [14], is a
machine learning model that achieves stronger learning effects
by integrating multiple weak learners. Since its introduction,
it has shown excellent performance in various classification
tasks and has been widely recognized. Because of XGBoost’s
powerful learning and classification capabilities, it is able
to efficiently capture patterns and correlations in data [15].
Therefore, the features of variable correlation in interrupt-driven
programs can be effectively learned. Furthermore, XGBoost
possesses the unique ability to autonomously assess feature
importance, facilitating the identification of critical features in
inferring correlation variables.

3. APPROACH

In this section, we present intCV, an approach built upon
an XGBoost model that automatically learns the semantic
information from programs and infers whether a shard variable
pair is correlated. The overall procedure of intCV is depicted
in Figure 3. Firstly, in order to identify the features required
for model training, we summarize the features of correlated
variables involved in real-world interrupt-driven programs
through a comprehensive empirical study. Then, we employed
static program analysis to extract the features related to
the correlation between pairs of shared variables, thereby
constructing training and testing samples. To obtain labeled
samples, we conducted an in-depth understanding and analysis
of software documentation and source code, and engaged
in communication with developers. This process allowed us
to identify genuine correlated variables within the software.
Finally, We constructed an XGBoost model and trained it using
the training set. The trained model serves as a classifier, which
can automatically learn the semantic and structural features to
distinguish whether shared variable pairs are correlated.

Data

Classifier

Source
code

......
Feature 1 Feature nPDG

Correlation features

Samples

Correlated variables

a) Correlation feature study

b) Feature extraction c) Model training
XGBoost

Figure 3: Overview of our approach.

3.1. Correlation Feature Study

The existing methods use relatively simple correlation features
and cannot effectively infer correlated variables. To explore how

the correlation between variables is reflected in the code, we
first conducted an empirical study on real-world cases of multi-
variable atomicity violations, revealing significant features that
are more detailed than before. The following shows the typical
variables correlations in interrupt-driven programs:

• Data dependence: Data dependence reflects the logical re-
lationship between variables, since we generated one value
from the other. As a result, correlated variables tend to
exhibit explicit or implicit data dependencies. For example,
Table I(d) shows that URcheck is explicit data dependent
on URlen in the ISR and they need update together in
the TASK, Figure 1 shows an implicit data dependencies
between gTime.Second and gTime.MilliSecond since the
variable tmpMs is data dependent on both variables.

• Control dependence: Similar to data dependence, a
control dependence also reflects the logical relationship
between variables inside a control conditional condition
and the branch statement. In interrupt-driven programs,
a large number of flag variables are used as customized
synchronization operations as lack of native concurrency
primitives. These flag variables are correlated with vari-
ables that need to be synchronized. As shown in Table
I(c), FlgRequest.RecEndTemp is control dependent on
FlgRequest.RecEndTemp.

• Elements sibling: Elements of an array are usually used
to represent different parts of the same entity. As shown
in Table I(b), Camera buf[i] represents a set of buffer
data that always needs to be accessed together.

• Fields sibling: Similarly, members of the same structure
are often used to represent different aspects of the same
object. Table I(a) shows that the field abstime.abshi and
abstime.abspps are used together to represent a specific
time; therefore, accesses to them are always together.
Similar examples can be seen in Figure 1.

• Short distance: Because of the way programmers think,
they tend to use correlated variables at the same time, so
these variables tend to be relatively close to each other
in source code distance. As shown in the Table I, all the
correlated variables are very close together on the source
code.

• Similar name: Correlated variables represent the same
information in different ways or specify different aspects
of the data, often with similar names, such as the same
prefix/suffix. As shown in Table I(d), the correlated
variable URlen and URcheck are named with the prefix
UR.

3.2. Feature Extraction

Based on the empirical study, we selected multiple variable
correlation features from the collected software to build
the dataset samples. Since the correlations between multiple
variables can be reflected through their pairwise interactions,
we adopt a pairwise analysis strategy to reduce the complexity
and overhead of the analysis. For this purpose, we construct
the samples as follows:

564

TABLE I: Correlated variable examples

ID TASK ISR

a
abstime.abshi = abshi;
abstime.abspps = abspps

final pps = abstime.abspps
+ (abstime.abshi <<32)

b
for(i = 2;i<16;i++){
sum = sum+Camera buf[i];
}

for(i = 0;i<17;i++){
Camera buf[i] = XBYTE[FIFO];
}

c
if(FlgRequest.RecEndTemp == 0){
FlgRequest.EndTemp = VALID;
}

FlgRequest.RecEndTemp = VALID;
FlgRequest.EndTemp = 0;

d
URlen=0;
URcheck=0; URcheck=(URlenˆDIYZS);

sample = ⟨Pair, L,R,CO,CD,DD,Arr, F ields,Name⟩

where Pair represent variable pair (x,y), L, R, and CO represent
the occurrences of x, y, and their co-occurrences in the program,
respectively. The co-occurrences refer to the instances where
these two variables appear together in the same function with
a source code distance of less than 10 lines. CD, DD, Arr,
Fields and Name denote whether there exists a data dependency,
control dependency, if they belong to the same array, if they
belong to the same structure and if they have similar names,
respectively, taking values of 0 or 1.
In order to collect the information needed for the sample, intCV
first traverse through the source code, collect the variable
names, access locations and access numbers of all global
variables. Then, intCV forms pairs of all global variables and
computes their frequency of co-occurrences in the program,
examines whether they belong to the same array or structure,
and evaluates if they have similar names. Subsequently, intCV
constructs the program dependency graph. By traversing the
program dependency graph, it captures the control and data
dependency relationships between variable pairs.

3.3. Model Training

The quantity and diversity of the training data used for
training machine learning models play a crucial role in
the accuracy of model decisions. However, there are no
available datasets to infer correlated variables. what’s more,
whether variables are correlated is closely related to program
semantics, it is challenging to clarify the correlated variables
even when the program is given. To address this problem,
we used real-world aerospace embedded software from the
CAST as our data source. Initially, we filtered software that
came with comprehensive documentation and annotated source
code. Following this, we delved deep into the software logic
and semantics, preliminarily identifying variables that might
be correlated. Ultimately, we liaised with the development
engineers associated with each piece of software to discuss and
verify these correlations. This process yielded four software
complete with annotations for correlated variables. On average,
the verification and confirmation process for each software
took about a month.
As shown in the Table II, this dataset consists of one power
supply control software, one propulsion control box software,
one attitude control software and one power control software
, with sizes ranging from 970 lines to 2275 lines. The term

TABLE II: Dataset

Software Description LOC Samples
module1 A power supply control software 2275 11935
module2 A propulsion control box software 970 2346
module3 An attitude control software 1153 4950
module4 A power control software 1218 4560

Samples represents the constructed pairs of correlated variables,
as illustrated in Table III. The Table presents the feature
and label information of the samples. For example, sample
1 signifies that variable gTime.Second appears 5 times in the
program, variable gTime.MilliSecond appears 5 times, and
they co-occur 5 times. There is a data dependency between
gTime.Second and gTime.MilliSecond, and they belong to the
same structure. A label of 1 indicates that this variable pair
is correlated. By feeding the constructed sample data into
XGBoost, we obtain our final classifier.

4. EXPERIMENT AND EVALUATION

We have implemented intCV, a detector for correlated variables.
It builds on some open-source tools including Clang/LLVM
[16] for implementing the C front-end, PhASAR [17] for
implementing the data flow analysis, dg [18] for building
dependence graph. We carried out our experiments on a
computer with an M1 Pro CPU, 16GB of RAM, and the
MacOS 13.3 operating system.

4.1. Dataset

Our data set is shown in Table II. We selected module1 and
module2 as the training set and module3 and module4 as the test
set. Due to the imbalance of positive and negative samples in the
dataset, the SMOTE algorithm was used to expand the training
sample. It is worth emphasizing that we aimed to include as
many cases as possible in our dataset. However, manually
analyzing the correlated variables in real-world embedded
software is highly time and resource-consuming. This process
requires a thorough understanding and analysis of the program.
Additionally, all the correlated variables that we manually
identify need to be individually confirmed by the developer.

4.2. Evaluation Metrics

To evaluate the effectiveness of intCV, we define the following
metrics:

• Precision: The ratio of the number of correlated variables
inferred correctly to the total number of correlated
variables inferred.

Precision =
TP

TP + FP

• Recall: The ratio of a number of truly inferred correlated
variables to the total number of all correlated variables.

Recall =
TP

TP + FN

565

TABLE III: Samples information

ID Pair L R CO CD DD Arr Fields Name Label
1 (gTime.Second,gTime.MilliSecond) 5 5 5 0 1 0 1 0 1
2 (open count 2,receeive buffer A) 9 8 0 0 0 0 0 0 0
3 (wk rData[72],wk rData[79]) 2 2 0 0 0 1 0 0 0
4 (power state,flag sf) 5 13 1 0 0 0 0 0 0

TABLE IV: Referring results of intCV

Software Precision Recall Accuracy F1-score
module3 50.00% 35.71% 99.72% 41.67%
module4 57.14% 36.36% 99.72% 44.44%
average 53.57% 36.04% 99.72% 43.06%

• Accuracy: The ratio of correctly inferred correlated
variables and non-correlated variables to the total number
of all samples.

Accuracy =
TN + TP

TP + TN + FP + FN

• F1-score: A metric used to evaluate the overall perfor-
mance of a model, considering both precision and recall
trade-offs. Its value ranges from 0 to 1, where 1 indicates
the best performance, and 0 indicates the worst.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall

4.3. Results
We investigate the following research questions to provide a
thorough analysis of the experimental results.
RQ1: How effective is intCV in inferring correlated
variables for interrupt-driven programs?
In this research question, we aim to measure the effectiveness of
our approach based on the metrics defined in section 4.2. Table
IV presents the experimental results on our dataset. Firstly, we
note that the average precision, recall, and F1-score on the
two software are not outstanding, being 53.57%, 36.04%, and
43.06% respectively. However, given the intricacies inherent
in concurrent programs, even in the simple task of prediction
concurrent condition-related bugs, the state-of-the-art learning
methods [19] achieve only a precision of 55% and a recall
rate of 39.6%. Considering that we are dealing with the
analysis of more intricate program semantics, this performance
is acceptable. Furthermore, due to the limited size of our
training dataset, consisting of merely two software, the model’s
effectiveness is hindered. However, with access to a more
extensive training dataset, the model’s performance could be
notably improved. Additionally, our precision is notably high
at 99.72%, mainly due to the relatively limited occurrences of
correlated variables in the program, resulting in a significant
disparity between positive and negative samples.
RQ2: How does intCV perform compared with other
methods for correlated variables inferring?
We experimentally compared intCV with MUVI for correlated
variable inference, and the experimental comparison results are

TABLE V: The performances of different approaches for
inferring correlated variables

Software CVs MUVI intCV
TP FP FN TP FP FN

module3 · 14 4 6 10 5 5 9
module4 11 3 4 8 4 3 7
overall 25 7 10 18 9 8 16

shown in Table V, where #CVs is the number of the correlated
variable pairs in software.
Since MUVI does not directly identify correlated variables, but
instead provides the probability of correlation between variables
and presents results in descending order of probability values.
To ensure fairness, we extract the top n results from MUVI,
where n corresponds to the number of reports from intCV.
For example, intCV reports 10 pairs of correlated variables in
module1’s detection, so we select the top 10 results from MUVI
for comparison. As shown in Table V, out of the total 25 pairs
of correlated variable pairs in the two software programs, intCV
reported 15 pairs, with 9 being true positives and 8 being false
positives. In comparison, MUVI reported 7 true positives and
10 false positives. Whether considering individual programs or
the overall performance, intCV outperformed MUVI.

5. RELATED WORK

There are several techniques and tools aimed at addressing
concurrency bugs in interrupt-driven programming. Wang
et al. [12] propose SDRacer, which automatically detects
order violations by combining static analysis and symbolic
execution techniques. Wu et al. [4] introduce a framework
of bounded model checking for analyzing data race. Their
key idea is to automatically serialize a concurrent interrupt-
driven program as a non-deterministic sequential program.
Li et al. [13] present a precise and efficient static detection
technique for interrupt atomicity violations, described by access
interleaving pattern. However, these methods only focus on
single-variable concurrency bugs and cannot handle the multi-
variable concurrency bug problem well. intCV is aimed at
inferring correlated variables in interrupt-driven programs to
help previous concurrency bug detectors to detect multi-variable
atomicity violations.
There are also some works focusing on detecting multi-
variable atomicity violations in threaded programs. Most of
these methods require manual labeling of atomic regions
[20][21][22][23] or employ predefined patterns of defect-
prone access interleaving for detection [24][25]. However,

566

manual annotation of atomic regions not only requires a deep
understanding of the program but also consumes a significant
amount of resources and time, making it difficult to apply in
practical engineering scenarios. Predefined access interleaving
patterns cannot reflect the correlation between variables, leading
to numerous false positives and false negatives in the detection
results.
Only a few methods explore how to automatically identify
correlated variables. Lu et al. [3] proposed MUVI, a hybrid
race detector for correlated variables. The algorithm recognizes
correlations among variables by combining static program
analysis and data mining techniques. It assumes variables
that frequently appear in the same method and are relatively
close to each other in the source code distance as correlated
variables. Inspired by MUVI, Jannesari et al. [8] proposed a
method to identify correlations between variables by taking
data dependencies into consideration. In addition to identifying
the variables that are often accessed near each other, it also
recognizes correlations based on the predefined patterns, which
indicate strong data and control dependencies between the
variables. Sun et al. [26] developed a dynamic analysis method
to infer correlation between variables based on their distance in
execution trace. However, these methods rely only on specific
correlation features to infer correlated variables, resulting in
relatively low accuracy of results. Additionally, these methods
do not directly provide the correlated variables but offer a
probability value for the programmer to confirm. However, the
confirmation process is highly complex and time-consuming.
The approach presented in this paper improves upon this
situation by characterizing multiple correlation features and
leveraging machine learning techniques.

6. CONCLUSION

In this paper, we first conducted an in-depth study on a large
number of real-world cases of multi-variable atomicity viola-
tions, summarizing the correlation features of variables. Based
on this foundation, a correlation variable inference method
based on XGBoost is proposed. This method extracts the
features of correlated variables from real-world software using
static analysis techniques, employs the SMOTE enhancement
algorithm to balance the sample distribution, and ultimately
constructs and trains an XGBoost model for the detection
of correlated variables. The experimental results on two real-
world aerospace embedded software programs demonstrate that
intCV outperforms existing methods with a minimal number of
training samples, validating the effectiveness of the proposed
approach in this study.
In future work, we plan to increase the volume of our
training data to enhance the model’s performance and reduce
false positives and false negatives. Additionally, we will
explore more features to aid in the identification of correlated
variables. We are also committed to integrating our model into
practical software development tools, aiding programmers in
bug detection and prevention in real-world scenarios.

REFERENCES

[1] Michael F Siok and Jeff Tian. 2007. Empirical study
of embedded software quality and productivity. In 10th
IEEE High Assurance Systems Engineering Symposium
(HASE’07). IEEE, 313–320.

[2] Li C, Chen R, Wang B, et al. An Empirical Study
on Concurrency Bugs in Interrupt-Driven Embedded
Software[C]//Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis.
2023: 1345-1356.

[3] Lu S, Park S, Hu C, et al. MUVI: Automatically inferring
multi-variable access correlations and detecting related
semantic and concurrency bugs[C]//Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems
principles. 2007: 103-116.

[4] Xueguang Wu, Yanjun Wen, Liqian Chen, Wei Dong, and
Ji Wang. 2013. Data race detection for interrupt-driven
programs via bounded model checking. In 2013 IEEE
Seventh International Conference on Software Security
and Reliability Companion. IEEE, 204–210.

[5] Nikita Chopra, Rekha Pai, and Deepak D’Souza. 2019.
Data races and static analysis for interrupt-driven ker-
nels. In European Symposium on Programming. Springer,
697–723.

[6] Rui Chen, Mengfei Yang, and Xiangying Guo. 2016.
Interrupt data race detection based on shared variable access
order pattern. Ruan Jian Xue Bao/Journal of Software 3
(2016), 547–561.

[7] Haining Feng, Liangze Yin, Wenfeng Lin, Xudong Zhao,
and Wei Dong. 2020. Rchecker: A CBMC-based Data Race
Detector for Interrupt-driven Programs. In 2020 IEEE 20th
International Conference on Software Quality, Reliability
and Security Companion (QRS-C). IEEE, 465–471.

[8] Jannesari A, Wolf F. Automatic generation of unit tests for
correlated variables in parallel programs[J]. International
Journal of Parallel Programming, 2016, 44: 644-662.

[9] S. Park, R. Vuduc, and M. J. Harrold, “Unicorn: a unified
approach for localizing non-deadlock concurrency bugs,”
Software Testing, Verification and Reliability, vol. 25, no.
3, pp. 167–190, 2015.

[10] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE:
synthetic minority over-sampling technique[J]. Journal of
artificial intelligence research, 2002, 16: 321-357.

[11] Wang B, Chen R, Li C, et al. SpecChecker-ISA: a
data sharing analyzer for interrupt-driven embedded soft-
ware[C]//Proceedings of the 31st ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. 2022:
801-804.

[12] Yu Wang, Linzhang Wang, Tingting Yu, Jianhua Zhao,
and Xuandong Li. 2017. Automatic detection and validation
of race conditions in interrupt-driven embedded software.
In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 113–124.

[13] Chao Li, Rui Chen, Boxiang Wang, Tingting Yu, Dong-
dong Gao, and Mengfei Yang. 2022. Precise and efficient

567

atomicity violation detection for interrupt-driven programs
via staged path pruning. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing
and Analysis. 506–518.

[14] Chen T, Guestrin C. Xgboost: A scalable tree boosting
system[C]//Proceedings of the 22nd acm sigkdd interna-
tional conference on knowledge discovery and data mining.
2016: 785-794.

[15] Zhang W, Wu C, Zhong H, et al. Prediction of undrained
shear strength using extreme gradient boosting and random
forest based on Bayesian optimization[J]. Geoscience
Frontiers, 2021, 12(1): 469-477.

[16] Chris Lattner. 2008. LLVM and Clang: Next generation
compiler technology. In The BSD conference, Vol. 5.

[17] Schubert P D, Hermann B, Bodden E. Phasar:
An inter-procedural static analysis framework for
c/c++[C]//International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Cham:
Springer International Publishing, 2019: 393-410.

[18] 2021. DG website. https://github.com/mchalupa/dg.
[19] Zhang J, Wang X, Zhang H, et al. Detecting Condition-

Related Bugs with Control Flow Graph Neural Net-
work[C]//Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. 2023:
1370-1382.

[20] Flanagan C, Qadeer S. A type and effect system for
atomicity[J]. ACM SIGPLAN Notices, 2003, 38(5): 338-
349.

[21] Vaziri M, Tip F, Dolby J. Associating synchronization
constraints with data in an object-oriented language[J].
ACM Sigplan Notices, 2006, 41(1): 334-345.

[22] Wang L, Stoller S D. Runtime analysis of atomicity for
multithreaded programs[J]. IEEE Transactions on Software
Engineering, 2006, 32(2): 93-110.

[23] Jannesari A, Westphal-Furuya M, Tichy W F. Dynamic
data race detection for correlated variables[C]//Algorithms
and Architectures for Parallel Processing: 11th International
Conference, ICA3PP, Melbourne, Australia, October 24-26,
2011, Proceedings, Part I 11. Springer Berlin Heidelberg,
2011: 14-26.

[24] Hammer C, Dolby J, Vaziri M, et al. Dynamic detection
of atomic-set-serializability violations[C]//Proceedings of
the 30th international conference on Software engineering.
2008: 231-240.

[25] Park S, Vuduc R, Harrold M J. A unified approach
for localizing non-deadlock concurrency bugs[C]//2012
IEEE Fifth International Conference on Software Testing,
Verification and Validation. IEEE, 2012: 51-60.

[26] Sun Z, Zeng R, He X. A method for predicting two-
variable atomicity violations[C]//2018 IEEE International
Conference on Software Quality, Reliability and Security
(QRS). IEEE, 2018: 103-110.

568

