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Abstract—Commit messages provide a natural language
description of the changes made to the code, enabling devel-
opers to swiftly comprehend the alterations without delving
into the implementation complexities. Nevertheless, generating
commit messages faces a considerable challenge due to the
semantic and structural differences between code and natural
language. Several researchers have put forward automated
techniques aimed at generating commit messages. However,
the full potential of code-related information is not yet fully
harnessed. In this paper, we propose a Multi-channel based
Code Change Representation Learning for Commit Message
Generation(Mucha). We first compare the changed code and
the corresponding AST before and after the change. Sub-
sequently, we extract the altered information from various
granularities and employ a multi-channel approach to capture
the code changes, utilizing the extracted information as the
basis for our analysis. In addition, we also use the query
mechanism and attention mechanism to assist in learning the
final code change representation. We build the experimental
dataset, since there is still no publicly sufficient dataset for
this task. The release of this dataset would serve as a valuable
contribution towards advancing research in this particular field.
We conduct a comprehensive experiment to assess the effec-
tiveness of Mucha. The experimental evaluation demonstrates
that our model outperforms the baseline model, which has
significant improvements of at least 18.2%, 72.2%, and 10.5%
against the baselines.

Keywords–code change; commit message generation; code
representation learning

1. INTRODUCTION

Version control in software development usually requires
developers to write a commit message for every commit man-
ually. A commit message precisely describes the modification
made in the code for a particular commit or the reasons
behind those changes, often presented in natural language.
Nonetheless, crafting a meaningful commit message demands
considerable effort from the developer.

Consequently, researchers have proposed many approaches
to automate generating commit messages. In the early stages
of research, commit messages were primarily generated by
applying pre-defined templates to the changed code [1], [2].
However, this template-based technique has limited suitability
for scenarios where it is not generalizable and cannot un-

derstand the intent behind code changes. Later, some stud-
ies adopted retrieval-based techniques, which generate cor-
responding commit messages by searching for similar codes
from known datasets and reusing their commit messages [3],
[4], [5], [6], [7]. Although this approach enhances flexibility,
its effectiveness heavily relies on the availability of similar
code snippets in known datasets and the extent of their
similarity.

With the promising results achieved by learning-based tech-
niques in recent years [8], [9], [10], [11], [12], [13], [14],
researchers have used them for commit message generation
task. The most typical of these is the application of neural
machine translation models (NMT). It regards commit mes-
sage generation as a translation task achieved by translating
the change code into natural language. Despite the impres-
sive performance exhibited by NMT models, they encounter
challenges with out-of-vocabulary (OOV) words.

Furthermore, there are general limitations in prior research
on code representations: these methods either input the whole
code before and after the change or just the code of the
changed part. They do not fully utilize the change information
of the changed code. For example, several studies [13], [15]
employ the concatenation of flat tokens or AST paths from
different change versions to represent code changes. By com-
paring the code representations of different change versions
without explicitly highlighting fine-grained code changes, their
coarse-grained representation can limit the analysis and under-
standing of code changes. In addition, the structure of the code
contains rich syntactic information. In this paper, we exploit
the change information of the code from multiple channels.
We consider the semantic information of the code and use the
structural information of the changed code.

Considering the limitations mentioned above and inspired
by the success of pre-trained language models [16], [17], [18],
[19], [20], [21], we propose a novel commit message approach
in this paper, Mucha. We use multiple channels to build the
semantics and syntax of the code. Moreover, we boost the
understanding of the model on code-change-related tasks by
initializing it with parameters provided by the pre-trained
model. It can form a good bias when fine-tuning on commit
message generation task to learn code change representations.

Specifically, given a code change, we first compare the
code before and after the change, and record the alignment
information between them. At the same time, we also extract
the structure of the code change according to the AST of the
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code before and after the change, and record the information
of the changed structure in the corresponding AST. Next, a
pre-trained code model is applied to compute the contextual
embedding of the changed code and the corresponding AST.
Then, a multi-channel mechanism is used to capture informa-
tion about the code changes from the contextual embedding. It
will use the information recorded above to locate the changed
code and part in the corresponding AST, and extract feature
vectors from them to capture the change details. This feature
vector can be used by attention as a query to retrieve relevant
contextual information from the code before and after the
change [21], and generate a final code change representation.

Meanwhile, we constructed an experimental dataset to as-
sess the performance of Mucha as well as other state-of-the-art
(SOTA) techniques. The results of the evaluation demonstrate
that Mucha outperforms all the compared techniques. We
then conducted an ablation study to analyze the effectiveness
of Mucha, which also reveals the significance of the multi-
channel approach.

The main contributions of this paper are:
• We propose a multi-channel technique for code changes,

which can learn the changed code representation from
multiple perspectives and select the necessary information
from the changed code, especially for changes to AST.

• We propose a novel approach for automated commit mes-
sage generation named Mucha, which consists of a pre-
trained code model and multi-channel technique.

• We construct an experimental dataset for commit message
generation, built from the original form of the changed code,
namely the old and new versions.

• We evaluated Mucha and compared it with other techniques
on our dataset, demonstrating the effectiveness of our ap-
proach through experimental analysis and an ablation study.
The remaining part of this paper is structured as follows:

In Section 2, we provide the background knowledge of some
techniques used in this study ans motivation for the study.
In Section 3, we illustrate our approach. Then, we detail the
experimental setup and experimental results in Sections 4 and
5 respectively. We discuss the threats to validity and related
work in Sections 6 and 7. Finally, we conclude the paper in
Section 8.

2. BACKGROUND

In this section, we briefly introduce the background of the
information presented, the AST used in our study, and the
motivation that inspired us to conduct this study.

2.1. GitHub Commits

In version control, a commit usually contains the code
before and after the change, and the corresponding natural
language describing the code change, i.e., the commit message.
In a commit, the changed code is marked with ‘+’ or ‘-’ ahead
of the line, while the code that has not changed is unmarked
and shown only once. The developers usually have to manually
write commit messages for code changes so that others can
quickly understand the code changes.

2.2. Abstract Syntax Tree

Abstract Syntax Tree (AST) is a tree designed to represent
the abstract syntactic structure of source code [22]. Each
node in AST represents different elements in the tree, which
contains rich structural information [23], [24]. Such as, node
type, node position and node label. It can provide all the details
that cannot be found in the original code.

2.3. Pre-trained Code Model

The pre-trained model has been widely used for code
representation, and it can build strong code representation
from large-scale corpora. By using the initialization parameters
provided by the pre-trained model, a good bias can be formed
when fine-tuning on downstream tasks to learn code change
representations. In addition, pre-trained models can prevent
overfitting on small sample datasets. The pre-trained models,
such as CodeBERT [25], CodeT5 [26] and UniXcoder [27],
show significantly promising results on code-related tasks.
These models are based on the Transformer architecture.
The impressive performance of these models inspires us to
integrate their advantages in the model.

2.4. Motivation of Multi-Channel

Researchers aim to generate a natural language description
for a single code commit, focusing on describing the code
changes using the changed code as the basis. Therefore, a
model designed to generate natural language descriptions of
code changes should be able to comprehend how the code
is modified. By learning from the changes in the code, the
model should be capable of automatically generating accurate
descriptions of the changes.

public int add() { 
int res = ans != null ? ans. add() : 0; 
res = res * 12 + score. add(); 
return res; 

}

public int add() { 
int res = ans. add(); 
res = res * 22 + 2 * score. add(); 
return res; 

}

(a) The before version of source code

(b) The after version of source code

1
2
3
4
5

1
2
3
4
5

-
-

+
+

Figure 1. An example of a code change

Figure 1 illustrates an example of a code change. Figure 1(a)
displays the source code before the change, and Figure 1(b)
displays the source code after the change. We can observe the
changes in the code snippets by comparing these two versions
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of the code. When observing at the line-level granularity,
it is evident that the second and third lines have changed.
However, upon considering a finer granularity level, we can
observe that the second line change entails the removal of
the variables ‘ans’ and the literal ‘null’, i.e., the structure of
the InfixEpression ‘ans! = null’ is deleted. Furthermore, the
method call ‘ans.add()’ is relocated to the beginning, and the
NumberLiteral ‘0’ is deleted, leading to the deletion of the
ConditionalExpression as well.

Regarding the change in the third line, the NumberLiteral
‘12’ is updated to ‘22’, and an InfixExpression is inserted
into the structure, specifically ‘2∗ score.add()’. This involves
moving the method call ‘score.add()’ and inserting the In-
fix Expression Operator ‘∗’ and NumberLiteral ‘2’ in front of
it. Thus, for this fine-grained change, we can directly obtain
more fine-grained editorial changes from the structure of the
AST.

However, existing techniques [11], [12], [13], [14], [15]
obtain code representations by simply concatenating the old
and new versions of the changed code without explicitly
emphasizing fine-grained AST node changes for the commit
message generation task. Through the comparison of rep-
resentations from different code versions, models may can
potentially identify fine-grained editing operations on their
own, such as the deletion of ‘res! = null’ or the movement
of ‘res.add()’.

Therefore, by analyzing the alterations in the attributes of
AST nodes, we can describe the code changes at a multi-
grain level. In particular, when describing code modifications,
we can extract more comprehensive information beyond mere
additions and deletions of code lines. For instance, we can
accurately describe the movement of a code line by observ-
ing changes in its ’position’ attribute. Furthermore, we can
pinpoint the specific updated part of a code line, such as
alterations in the value of a NumberLiteral. This approach
grants us access to a wealth of semantic information.

Finally, since AST nodes can be categorized into various
levels [28], ranging from word-level to statement-level, this
provides the model with the capability to comprehend code
changes from different perspectives. By considering changes
at these diverse levels, the model can gain a more compre-
hensive understanding of the code modifications, which has
the potential to enhance its prediction performance. Therefore,
our proposed method uses multi-channel techniques to better
capture information at three levels of granularity (i.e., Line-
level, Token-level, and AST-level).

3. PROPOSED APPROACH

In this section, we illustrate our approach, Mucha. The
architecture of the Mucha is depicted in Figure 2, comprises
three main components:

Data diff. Given a code change, split it into before and after
change codes, i.e., Cb and Ca, and obtain the corresponding
ASTs, i.e., Ab and Aa, respectively. Mucha compares the
Cb and Ca sequences to find the modified codes and build
code change C from the stored line alignment information.

In addition, the Ab and Aa are compared to find the changed
node and store their information in the corresponding AST.

Contextual Embedding. The C, Ab, and Aa in the data
processing are fed through a pre-trained model to obtain the
corresponding contextual embedding vectors.

Multi-channel. The vectors obtained from contextual em-
bedding and the information stored in data processing are used
as input to produce the final code change representation of C
through multiple channels.

3.1. Data diff

In this paper, our model is designed to process changes
in code at the method level. Thus, given a code change, we
split it into the before change Cb and the after change code
Ca. We use difflib [29], a package provided by Python, to
perform code diff to obtain the code in which the change
happened, including the new lines added in Ca, the lines
deleted in Cb, and the lines unchanged. Meanwhile, we use
GumTree [30] for Cb and Ca, a tool that can parse AST, to
get the corresponding AST, i.e., Ab and Aa. Then, we will
extract the corresponding change information from the three
different granularities of changed code lines, token, and AST
node changes, respectively.

Line Aligning. For the before and after changed code Cb

and Ca, we first use difflib to perform line alignment and
record their line alignment information. Specifically, for the
same lines of code in Cb and Ca, i.e., lines of code that have
not changed, we record them as keep and mark them with a
special token [KEEP ] in front of the line. We only record
such lines of code that have not changed once. For added
lines of code in Ca that do not exist in Cb, we record them
as add and mark them with a special token [ADD] in front
of the line. Similarly, for deleted lines of code that are in Cb

and do not exist in Ca, we record them as delete and mark
them with a special token [DEL] in front of the line. Finally,
we obtain the line-level code difference sequence through the
above procedure, namely C, as shown in Figure 3. In addition,
we use a flag to identify the changed line, where 1 indicates
that the line changed and 0 indicates the line no changed.

Token Aligning. For the lines in Cb and Ca that have
changed, we use difflib to perform token alignment and
record their token alignment information. Specifically, after
performing the line aligning, we identify the changed token for
the changed lines, which we will identify with a flag, where
1 indicates that the token changed and 0 indicates the token
no changed.

AST Aligning. After obtaining Cb and Ca from the code
changes, we use the GumTree tool to parse them and obtain
the corresponding ASTs, namely Ab and Aa. Meanwhile, we
use the GumTree tool to compare the differences between the
ASTs of Cb and Ca and locate the changes in the AST nodes.
For the difference comparison of AST nodes, there are five
different types: Match, Insert, Delete, Move, and Update, as
shown in Figure 4.
• Insert: As illustrated by the orange node in Fig-

ure 4(b). The code node, such as NumberLiteral and
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..
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1. Data diff 2. Contextual embedding 3. Multi-channel

throw Exceptions.illegalStateWithCauseOf(e);

throw illegalStateWithCauseOf(e);

} 
}

private static void closeContext(Context context) {
checkNotNull(context); 
try { 

context.close(); 
} 
catch (Exception e) {

-

+

Figure 2. Overview of model

public int add() { 
int res = ans != null ? ans.add() : 0; 
int res = ans.add(); 
res = res * 12 + score.add();
res = res * 22 + 2 * score.add();  
return res; 
}

[KEEP]
[DEL]
[ADD]
[DEL]
[ADD]
[KEEP]
[KEEP]

Figure 3. Code Diff part of a real Java code input before and
after the change.

InfixExpression, does not exist in ASTold but exists in
ASTnew. The changed new node is inserted in ASTnew.

• Delete: This changed code node exists in ASTold but not in
ASTnew, such as NumberLiteral and InfixExpression.
As indicated by the red node in Figure 4(a).

• Move: The code node MethodInvocation exists in both
ASTold and ASTnew, but the position of the AST node in
ASTold is changed in ASTnew. Generally, only statement-
level AST nodes are modified, as indicated by the green
node in Figure 4(b), which do not include its child nodes.

• Update: This type of changed code node occurs in both
ASTold and ASTnew and generally indicates that part of

a statement or expression has changed (for example, a
change of variable name). As indicated by the blue node
in Figure 4(b)(i.e., NumberLiteral).
In this paper, we select only the changed nodes among them,

i.e., discard the Match type. We align the changed nodes to the
corresponding nodes in Ab and Aa by node position and type
information. We also use the same flags as above to identify
the changed nodes in AST.

3.2. Contextual Embedding

In this paper, we integrate pre-trained models to build
strong code representations. Therefore, we use the tokenizer
used in the pre-trained model to tokenize the change code C
and the corresponding AST. Our model has three encoders,
each with 12 transformer encoder layers and 12 decoder
layers. We integrate the two encoders about AST into one
encoder, as shown in Figure 2. We initialize Mucha with the
parameters of UniXcoder. UniXcoder utilizes mask attention
matrices to enhance code representation with cross-modal
content like AST and code comments. It is widely used for
code-related tasks. We then take the change code C, and
the corresponding AST as input and obtain the corresponding
contextual embedding vectors by encoding it. For the change
code C after encoding is denoted as HC = [h1, h2, ...h|C|].
Moreover, the corresponding ASTs for the change codes,
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(a) AST changes in second line

Before_AST
After_AST

res = res * 12 + score.add(); res = res * 22 + 2 * score.add(); 

Parse

InfixExpression

InfixExpression MethodInvocation

InfixExpression

InfixExpression

NumberLiteral NumberLiteral

InfixExpression

Infix_Expression_
Operator MethodInvocation

(b) AST changed in third line

NumberLiteral

int res = ans != null ? ans.add() : 0; int res = ans.add(); 

Parse

Before_AST

After_AST

VariableDeclaration
Fragment

SimpleName MethodInvocation

VariableDeclaration
Fragment

SimpleName

MethodInvocation

Conditional
Expression

InfixExpression NumberLiteral

Delete Node
Move Node
Update Node
Insert Node

Figure 4. A real world AST Diff part of a Java change before and after code input. Due to space constraints, we only show
part of the AST Diff sequence.

i.e., Ab and Aa, are denoted as HA
b = [h1, h2, ...h|Ab|] and

HA
a = [h1, h2, ...h|Aa|], respectively. We then use these three

levels of alignment information to get the change information
from the contextual embedding. We capture the semantic and
syntactic information of the change code at three different
granularities.

3.3. Multi-Channel

This part produces the final representation vector for the
given change code. In this paper, we follow the query back
mechanism used in previous work [21] and combine it with
our proposed multi-channel to help Mucha better capture code
change information. We use the changed code part as a query
q by the query back mechanism and then q to get important
information from the changed code C. Finally, we combine
the attention mechanism to output the final vector.

Specifically, this paper combines the contextual embeddings
HC , HA

b , and HA
a generated by the pre-trained model with the

alignment information obtained in the data diff to generate the
final changed code representations. We describe the combina-
tion of these three channels in detail: Line-level, Token-level,
and AST-level.

Line-Level Channel. After getting the change codes Cb

and Ca in data diff, we align them and identify the changed
lines with flags. We then follow the query back mechanism
in previous work [21]. Based on these flags, we extract the
changed information from the contextual embedding (HC)
generated by the pre-trained model. We combine the changed
information with the query back mechanism to obtain the final
change code representation vcl .

Token-Level Channel. Similarly, after we do the line
alignment in data processing, we align the token to the
changed lines and mark the changed token with a flag. We
then combine the query back mechanism with the changed

information extracted from HC based on these flags to get
the final change code representation vct .

AST-Level Channel. In data processing, we obtain the
changed nodes by comparing Ab and Aa and use flags to
identify the nodes that changed in Ab or Aa. We also use the
query back mechanism and combine the change information,
which is extracted from HA

b and HA
a based on these flags, to

generate the final change code representations vab and vaa .
Then, we linearly project them into the same feature space,

normalize them with layer normalization, and merge them to
generate the final change code representation vh.

vh = W c
l v

c
l +W c

t v
c
t +W a

a v
a
a (1)

where W c
l , W c

t and W a
a are learnable parameters of this

module.

4. EXPERIMENTAL DESIGN

4.1. Datasets

In this paper, we extract change information at differ-
ent granularities (i.e., Line-level, Token-level, and AST-level)
for change codes. These include constructing ASTs on the
changed code and extracting the changed AST nodes from
them to obtain the structural information of the differences.
Our model is designed to process changes in code at the
method level. However, the previous datasets on the commit
message generation task either focus on the changed part
without involving the changed context codes or store the old
and new versions serialized in diff formats. In addition, A
code diff usually contains one or more hunks. We present the
dataset in the experiment as follows from dataset collection
and construction.

Dataset Collection. We obtain the dataset required for
our experiments by constructing their open-source dataset
provided by Tufano et al. [31], which is at the method level.
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Thus, we guide the evaluation experiments on the dataset
released based on the previous work. The original dataset is
collected from popular Java projects on GitHub.

The dataset contains 167k triples <ms, cnl,mr> of
changed code and corresponding code reviews after their pre-
processing (e.g., filtering out noisy comments), where ms

is a method submitted for the review; cnl is a suggested
comment from the reviewer for code changes to ms; mr is the
revised version of ms that incorporates the recommendations
provided by the reviewers denoted as cnl. Our work is different
from previous work, which only focuses on the suggestions
given by the reviewers(ms) during the code review process.
In contrast, our work concentrates on the commit message
before submitting the code review.

Dataset Contruction. We construct our dataset in triplets
<cb,msg, ca > form, where cb is the code before the change;
ca is the code after the change; and msg is the change in-
formation describing the code. Then, since the text sequences
in open-source dataset [31] were already pre-processed and
contains special tokens such as <START>, <END> and
<technical language> to indicate the msg and its corre-
sponding codes, we automatically transformed them into our
code format with regular expressions.

To ensure that our processed dataset is clear, we design a
script to validate these datasets, which have been transformed
into a code format, by discarding data that cannot be built as
an AST. Finally, we discarded 3.2% of the dataset with the
designed scripts.

4.2. Research Questions

For commit message generation, the primary challenge
is ensuring that the generated change messages, which are
in natural language, effectively represent the corresponding
code changes. To investigate whether multi-channel with the
different granularity of Mucha outperforms baselines and the
impact of each channel, we design the following research
questions (RQs):

[RQ1:] How effective is Mucha compared with the SOTA
baselines on commit message generation?

[RQ2:] What role does each component play in Mucha?
[RQ3:] What is the impact of experimental parameters

on the performance of our approach?
In RQ2, we explore the impact of each channel on the

model’s performance by removing them one by one and
evaluating the model’s results. This analysis will help us
understand the individual contributions of each channel to
Mucha’s effectiveness in generating commit messages. For
the impact of the pre-trained code model, we use different
pre-trained models to investigate their contribution to Mucha’s
effectiveness.

4.3. Baseline Models

In this section, we introduce the baselines utilized in our
experiments. A brief description of each baseline is provided
below:

• CODISUM [11]: CODISUM is an NMT-based approach
aimed at generating commit messages through learning
techniques. It leverages both the code structure and code
semantics to produce more accurate and informative commit
messages. Moreover, CODISUM employs the copy mecha-
nism to mitigates the OOV problem.

• CoreGen [32]: CoreGen presents a two-stage framework for
commit message generation, building upon the Transformer
model. They construct the code semantics using contextu-
alized code information.

• CCRep [21]: CCRep is a code change representation ap-
proach that consists of a pre-trained model and the query-
back mechanism. It mainly uses a query mechanism at the
line level and token level for changed code, and applies code
change related downstream tasks. In this paper, we take the
model structure from their work and process the data to the
appropriate line-level and token-level for input.

• CodeBERT [25]: CodeBERT is a bimodal pre-trained
model for programming and natural language. They pre-
trained with two pre-trained objectives. In this paper, we
use the CodeBERT encoder-decoder architecture, where the
encoder and decoder layer parameter settings follow those
from their work, and the input is the code before and after
the change.

• UniXcoder [27]: UniXcoder employs mask attention ma-
trices to exert control over the model’s behavior and
enhances the code representation by incorporating cross-
modal content like AST and code comments, making model
becomes proficient in supporting code-related understanding
and generation tasks.
To ensure the fairness and stability of the experiments, we

followed the parameter settings in their experiment and used
our dataset for it. We conducted all methods on our dataset
and repeated each experiment 10 times.

4.4. Evaluation Metrics

To measure the quality of the generated commit message,
we use BLEU [33], METEOR [34], and ROUGE-L [35] as
metrics in the experiment. All these metrics score from 0 to
100, where 0 means a no match and 100 means a perfect
match.

BLEU uses an n-gram matching rule to compare overlap-
ping n-grams. It is used for evaluating the quality of generated
comments and is considered an accurate metric. In this paper,
we use the BLEU-4 in our experiments. The score is calculated
as:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(2)

where pn refers to the ratio of identical subsequences with
length n in the reference. wn are positive weights that sum to
1. In this paper, we set N to 4 and wn to 1/4. BP is brevity
penalty:

BP =

{
1 c > 0

e(1−r/c) c ≤ 0
(3)
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where c is the length of the generated and r is the actual length
of the reference.

ROUGE-L evaluates the similarity between the generated
and the reference. It computes the F-score based on the longest
common sub-sequence to evaluate the generated text. The
score is calculated as follows:

ROUGE − L = (1+β2)RlcsPlcs

Rlcs+β2Plcs

(4)

Rlcs and Plcs represent the recall rate and accuracy rate
respectively. β is set to a very big number. Therefore, only
Rlcs is considered.

Rlcs =
LCS(X,Y )

m
(5)

Plcs =
LCS(X,Y )

n
(6)

where LCS (X,Y ) refers the length of the longest common
subsequence between X and Y . m and n respectively repre-
sent the length of the reference text and the generated text.

METEOR is a recall-oriented metric and calculates the
harmonic mean of accuracy and recall between the generated
and reference text. The score is calculated as:

METEOR = (1− Pen)Fmean (7)

where Pen is calculated according to the number of chunks
(ch) and the number of matches (m):

Pen = γ ∗
(

ch
m

)β

(8)

The values of β and γ parameters are set to 0.20 and 0.60,
respectively, following the prior work [34].

4.5. Experimental Setting

In our experiments, we use GumTree tools to parse ATS for
before and after changes on the Java code and compare ASTs.
We implement our model using HuggingFace’s Transformer
python package and the deep learning framework PyTorch.
We train the model on a server with 24 cores of 3.8GHz CPU
and an NVIDIA GeForce RTX 3090GPU. The coefficient λ
of 2 regularization item was set to 10e-5. During the training
phase, we utilize the Adam optimizer with a learning rate of
5e-5 and linear warmup.

5. RESULTS ANALYSIS

In this section, we show the results of our experiments.
We first show the performance of our model on the commit
message generation task and its results compared to baselines.
Additionally, we investigate each channel’s individual impact
and the pre-trained model’s initial parameters on Mucha’s per-
formance. Due to hardware resource constraints, we analyze
the impact of different experimental parameters on our model.

5.1. Answering Research Question1

[RQ1:] How effective is Mucha compared with the SOTA
baselines on commit message generation?

To evaluate the quality of the commit messages generated
by the model, we measure the difference between the gener-
ated messages and the reference sequences using the metrics
mentioned above (i.e., BLEU, METEOR, and ROUGE-L). The
results presented in Table I demonstrate the effectiveness of
Mucha for commit message generation on the java method.
our proposed model outperforms the compared models in met-
rics such as precision (measured by BLEU, ROUGE-L) and
recall (measured by ROUGE-L, METEOR). The significant
improvements of at least 18.2%, 72.2%, and 10.5% against
the baselines on the experimental dataset. For the decreased
ROUGE-L scores, we consider that this is also relevant to the
model’s parameters. For this reason, we further discuss the
impact of the model parameters in RQ3.

TABLE I
METRICS EVALUATION RESULTS FOR THE BASELINES AND MUCHA

Methods BLEU METEOR ROUGE-L
CODISUM 3.56 1.30 5.64
CoreGen 6.72 2.51 6.59
CCRep 3.50 4.80 2.65

CodeBert 6.26 2.39 6.42
UniXcoder 9.62 4.46 9.46

Mucha 11.37 8.27 7.28

Although our models outperform the compared baseline
model on the experimental dataset, the results on these three
metrics (BLEU, METEOR, and ROUGE-L) are still relatively
low. This also indicates that it is challenging to generate
change information for change codes, which are generally
diverse and not unique. This is because the commit message
generated by the model may be semantically similar to the
ground truth, but the form or word it presents is very different.

5.2. Answering Research Question2

[RQ2:] What role does each component play in Mucha?
This RQ is designed to explore the impact of each compo-

nent on Mucha’s performance. We perform the ablation study
by removing each/all channels and initializing the parameters
with different pre-trained models. Different from the pre-
trained model parameters of UniXcoder used in this paper’s
approach, in the ablation study, we use CodeBERT pre-trained
model parameters for initialization (i.e., Mucha-CodeBERT).
The experimental results are shown in Table II.

TABLE II
ABLATION STUDIES OF EACH CHANNEL AND PRE-TRAINED CODE MODEL.

Methods BLEU METEOR ROUGE-L
Mucha 11.37 8.27 7.28

-w/o AST 9.82 7.70 5.32
-w/o Line 10.58 7.85 6.44

-w/o Token 10.14 7.91 5.74
Mucha-CodeBERT 4.75 4.95 3.63

The first observation we can make is that the model per-
formance is degrading when removing channels or initializing
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other pre-trained model parameters. When we remove one of
these three channels, the performance of the model decreases.
Among them, the drop effect is most significant when the
AST channel is removed. This also shows that learning the
changed structure information of AST can be helpful in
bridging the gap between code changes and natural language.
While removing Line or Token channel does not have as much
impact on model performance as removing AST channel, both
channels have a higher impact on model performance than
the model without channel. The results also show that the
performance of the model is improved by integrating the two
channels.

In addition, we can observe that when we initialize Mucha
with different pre-trained model parameters, the performance
of the model varies. We set the initial parameters of UniXcoder
for Mucha, which has better results in the three metrics.
Choosing the suitable pre-training model parameters has a
positive effect on the model improvement.

By ablation study, we can find that different channels have
different degrees of influence on the model, and appropriate
model initialization are helpful in improving the model per-
formance.

5.3. Answering Research Question3

[RQ3:] What is the impact of experimental parameters on
the performance of our approach?

Due to hardware resource limitations, we evaluate the ex-
perimental parameters’ impact on our method and the model’s
sensitivity to some parameters. We explore the impact of
different parameter settings on model performance by varying
the learning rate, and input length for Java methods in our ex-
periments. Figure 5 and 6 shows the model’s metric evaluation
results with different parameter settings on our experimental
dataset.
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Figure 5. The evaluation scores of the models at different input lengths

Figure 5 shows the performance of Mucha for different input
lengths. We can first observe a general trend that the score of
the model under the metrics increases with the input length.
Then, when the input length comes to 512, the model’s metrics
scores change relatively dramatically. Although ROUGE-L’s
score has decreased, the change is not floated a lot. This may
be related to the dataset, where the parts of the dataset that
have changed may be somewhat similar. The reason is that

as the input increases, the information learned by the model
increases accordingly, making the text generated by the model
on the test dataset very similar to the reference text, while
semantically different.
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Figure 6. The evaluation scores of the models at different learning rates

Figure 6 shows the performance of Mucha for different
learning rates. We can observe that different learning rates
make the model have different scores. Choosing the appropri-
ate learning rate also helps the model’s performance.

In conclusion, different model parameters have different
effects on the experiments. However, the overall performance
fluctuation of the model is still relatively stable. In this paper,
we set the source length and learning rate to take the values
of 512 and 5e-5, respectively.

6. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of the
approach as follows:

External validity. Threats to external validity in this study
primarily stem from the dataset collection and utilization pro-
cess. The dataset we collected is implemented in Java, which
is collected from the dataset of Tufano et al [31], by adapting it
to obtain the corresponding change descriptions. The findings
and conclusions drawn from this study might not directly apply
to projects implemented in different programming languages,
regardless of whether they are open-source. In the future, we
will explore more diverse projects and incorporate various
programming languages to enhance our understanding of what
constitutes a high-quality message and reduce this threat.

Internal validity. In our method, the factors most likely
to affect the internal validity are the implementation of com-
pared techniques and the configuration of the experimental
environment. To mitigate the risk of compared techniques
implementation, we implement them directly from their re-
producible open-source packages. If their package is not
available or executable, we reproduce them as described in
the corresponding papers.

Construct validity. In our study, the threat to construct
validity is the evaluation metrics. To reduce the threat in-
troduced by metrics, we adopt three evaluation schemes:
BLEU, METEOR, and ROUGE. However, we consider that
using these automated metrics to evaluate models may not
represent human evaluation. There may be cases where a
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model produces a grammatically and semantically valid text,
but it does not match the reference text generated by humans.
Therefore, there is no evaluation of whether a reference text
is suitable for a given method. So, in the future, we will
further perform a human evaluation of the model to mitigate
the pitfalls involved in automated metrics and help us interpret
the effectiveness of our model through experimental results.

7. RELATED WORKS

7.1. Commit Message Generation

The existing work on commit message generation can be
categorized as template-based, retrieval-based, and learning-
based.

Template-based. Researchers generate commit messages
by analyzing the code changes and employing pre-defined
templates to construct the messages. For instance, Buse and
Weimer [36] use path prediction to design a templates for
changed code. On the other hand, Shen et al. [1] design
templates based on the method stereotypes and the type of
code changes, offering insights not only into what has been
altered but also the rationale behind those changes.

Retrieval-based. Later work uses information retrieval
techniques by retrieving similar codes from the training set
and thus reusing their commit messages. For example, Liu et
al. [3] propose to generate concise commit messages using
the nearest neighbor algorithm. From the training set, they
use cosine similarity and BLEU as metrics to select the most
similar code changes. Similarly, Huang et al. [4] use syntactic
and semantic similarity to find code changes.

Learning-based. Recently, researchers have been exploring
the use of deep learning techniques for commit message
generation. Jiang et al. [8] and Loyola et al. [9] employ
NMT models directly for translation purposes. They establish
a connection between code changes and natural language by
using NMT to translate code changes into human-readable
commit messages. Building upon this foundation, Later work
by Loyola et al. [10] further enhance the commit message
generation quality by leveraging the contextual information of
the code changes. allows their model to improve the generation
quality. Nie [32] propose a novel approach to learn contextual
code representations by leveraging contextual information.
These learned representations are subsequently utilized to fine-
tune the Transformer model specifically for commit message
generation.

In this paper, our approach goes beyond solely considering
the changed code’s semantic information. Instead, we also con-
sider the structural information of the changed code at multiple
granularities to achieve a more comprehensive understanding
of the code changes.

7.2. Code Representation Learning

Deep learning has become increasingly prevalent in soft-
ware engineering, leading to a growing interest in extracting
semantic features directly from source code. By employing
deep learning techniques, this approach enables the model to
acquire semantic information directly from the code, leading to

substantial enhancements in its performance. Besides, several
prior studies have shown that semantic features can capture
much information and significantly improve performance [37],
[38], [39].

Moreover, owing to the remarkable achievements of pre-
training methods in recent years [16], [17], [18], [19], re-
searchers have attempted to apply these pre-training techniques
to programming languages, aiming to enhance the advance-
ment of code intelligence. Kanade et al. [40] adopt two key ob-
jectives, namely masked language modeling and next sentence
prediction, as part of their pre-training process for CuBERT, a
model specifically designed for Python code. CodeBERT [25],
a bi-directional transformer model pre-trained on NL-PL pairs
in six programming languages, excels at learning code rep-
resentations. GraphCodeBERT [41] considers code data flow
based on CodeBERT and designs a pre-training task for code
data flow. Encoder-decoder models, like PLBART [15] and
CodeT5 [26], as well as UniXcoder [27], are employed for
both comprehension and generation tasks. These models take
either source code or textual input as their input data. On the
other hand, CodeReviewer [42] follows a different approach
by utilizing the diff format of the code. It leverages four pre-
training tasks to learn code changes and effectively applies
them to automate code review activities. While CCRep [21]
learns the representation of the change code by a pre-trained
model as well as the query mechanism.

In this paper, We consider the importance of pre-trained
models, and we integrate pre-trained models and multi-channel
to learn the representation of changed code from multiple
levels.

8. CONCLUSION AND FUTURE WORK

In this paper, we present Mucha, a multi-channel based
code change representation learning for generating commit
messages. Additionally, we build a dataset for commit message
generation to conduct our experimental evaluation.

1) A new input representation addresses the inadequate uti-
lization of code change information. This new representation
incorporates code change details from three different levels
of channels, effectively leveraging a multi-channel approach.
2) The experimental results show that Mucha outperforms
the compared models. Furthermore, the ablation experiments
provide valuable insights into the effectiveness of each channel
in Mucha and highlight the significance of the pre-trained
model in contributing to the overall performance improvement.

In the future,we plan to conduct further evaluations of
the proposed model on larger-scale datasets encompassing
various programming languages. Moreover, we will explore
and experiment with other models that can capture a more
comprehensive range of change information in the changed
code, and perform a human evaluation of the model to interpret
the effectiveness of our model through experimental results.
Our code and data are publicly available at https://github.com/
cmgads/Mucha.
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