
DeepDiffer: Find Deep Learning Compiler Bugs via

Priority-guided Differential Fuzzing

Kuiliang Lin1, Xiangpu Song1, Yingpei Zeng2,∗, and Shanqing Guo1,∗
1Shandong University, Qingdao, Shandong, China

2Hangzhou Dianzi University, Hangzhou, Zhejiang, China
linkuiliang@mail.sdu.edu.cn, songxiangpu@mail.sdu.edu.cn, yzeng@hdu.edu.cn, guoshanqing@sdu.edu.cn

*corresponding author

Abstract—Recently, Deep learning (DL) compilers have
been widely developed to optimize the deployment of DL
models. These DL compilers transform DL models into high-
level intermediate representation (IR) and then into low-
level IR, ultimately generating optimized codes for different
hardware targets. However, DL compilers are not immune
to generating incorrect code, leading to potentially severe
consequences. Testing techniques for low-level IR are limited,
and efficient approaches for detecting some categories of
non-crashing bugs are lacking. In this paper, we address
the limitations of existing low-level IR DL compiler testing
techniques and introduce DeepDiffer, a priority-guided dif-
ferential testing framework designed to detect bugs resulting
from low-level optimizations in the DL compiler, specifically
TVM. We propose a novel DL compiler coverage metric and
establish an optimization goal to maximize the detection of
valuable differences between DL compilers. Our experiments
demonstrate that DeepDiffer outperforms existing low-level
IR fuzzers, detecting a wider range of bug types. In fact,
DeepDiffer has successfully identified 13 bugs in TVM, which
can be categorized into 9 distinct root causes, and 9 bugs
are first found. We have submitted these bugs to the TVM
community, where they have been confirmed.

Keywords–Fuzzing; Differential Testing; Compiler Testing;
Machine Learning Systems

1. INTRODUCTION

Deep learning (DL) compilers, including TVM [1], Glow
[2], and nGraph [3], play a crucial role in optimizing deep
learning models to meet the specific requirements of de-
ployment on various devices. These compilers take a deep
learning model as input and apply multiple optimizations to
generate hardware-optimized code as output [4]. However, like
traditional compilers, deep learning compilers are susceptible
to bugs, which can lead to a range of unexpected behaviors
such as crashes, poor performance, and incorrect code genera-
tion [4]. These undesired behaviors can significantly impact
the accuracy and reliability of deep learning applications.
Moreover, the complexity of compiler implementations poses
challenges for diagnosing errors in deep learning compilers.

Designing automated testing techniques for deep learning
compilers is essential. Fuzzing has emerged as a widely used

technique for identifying software bugs and testing compilers
[5], [6], [7]. However, generic binary fuzzers [8], [9], [10]
face challenges in generating valid inputs and parsing the
components of DL models due to the distinct characteristics
between traditional compilers and DL compilers [11]. DL
compilers encompass multiple optimization stages, including
high-level and low-level optimizations. Recent research [12]
has made efforts to generate models guided by constraints
to detect high-level bugs. Nonetheless, extracting these con-
straints is challenging, and its search space is limited due to
satisfying these high-level constraints. In contrast, the low-
level intermediate representation (IR) in DL compilers exhibits
diverse implementations and performs complex hardware-
specific optimizations [11], presenting an opportunity to detect
more specific, deeper, and severe compiler bugs. Thus, this
paper concentrates on the detection of low-level stage bugs to
effectively address these challenges.

To the best of our knowledge, there is limited research
focused on testing the low-level optimization of DL compil-
ers. One such tool, TVMFuzz [13] generates low-level IRs
based on user-defined grammar rules. However, TVMFuzz can
only detect bugs with obvious error characteristics, such as
crashes, and may not capture more subtle issues like logic
errors. Another tool called Tzer [14] performs joint IR-Pass
mutations, and compares the results between optimization
passes and without them to detect bugs. However, it falls short
in detecting non-optimization differential errors. Many bugs,
including non-optimization code logic errors, stem from basic
code logic mistakes and are not directly related to optimization
[4]. These bugs often manifest with symptoms like wrong code
behavior, which does not exhibit obvious errors like crashes,
yet their impact can be severe [4]. Addressing these categories
of bugs is crucial for enhancing the reliability and performance
of DL compilers, but unfortunately, existing solutions are
currently unable to address these challenges.

Despite the inherent difficulties, it is crucial to acknowledge
that the architecture of compilers remains unstable due to
the rapid advancements in both compilers and deep learning
technologies, driven by the need to meet hardware and al-
gorithmic requirements. Numerous differences exist between
various compiler versions, encompassing both optimization
and non-optimization code logic disparities. For instance,
between November 2021 and April 2023, TVM underwent

616

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

2693-9177/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS60937.2023.00066

four versions and had seven development branches, with each
update containing at least 7000 commits. Conversely, frequent
updates to DL compilers also make the code susceptible to
triggering errors. A study shows that 77% of 23k bugs are
regressions [15], and the code that has changed recently or
frequently is more likely to produce new errors [15]. However,
different compiler versions could also be used for differential
testing. We can conduct comparisons between executions with
different compiler versions to reveal unexpected behaviors and
detect errors. If the execution differences for the same models
are substantial, these execution models can serve as valuable
test seeds, and we can utilize them for effective fuzz testing
by mutation.

Thus, in this paper, we propose DeepDiffer, a differential
fuzzing approach to maximize the vulnerable differences in
different versions of compilers and compare the execution
results to effectively detect various bugs in TVM. There are
three challenges we need to resolve.

Different compiler versions may be incompatible. With
the update of DL compilers, the architecture can sometimes
differ, leading to incompatibility issues. There are two kinds
of incompatible errors when we aim to ensure the differential
testing uses the same inputs. First, TVM may encounter
incompatible errors with functions or fields. To address this
problem, we strive to fulfill their requirements. For instance,
the parsing functions cannot handle IR with different fields
so we select the latest versions that have the same fields,
which can be parsed by functions. Second, some objects
such as PassNode and terminal may be bound to the local
environment. We cannot run two versions of TVM on one
terminal simultaneously and these objects defined in one ter-
minal encounter problems in another terminal. Therefore, we
have designed a client-server framework and employed sockets
to transmit the IR-Pass pair to the respective terminals. For
those objects, we export their identifications (i.e., names) and
send them to different terminals. Then we utilize functions to
recover and define them within the individual local terminals.

What kind of information should we collect? There
are many indicators of program execution, and our goal
is to effectively reveal asymmetries. Therefore we choose
information pertinent to valuable differences. In the case of
DL compilers, the most crucial function is to enhance the
runtime performance of DL models. Large time differences
imply that some problems lead to the poor performance of the
compilers. Based on this observation, we collect information
on DL compiler’s differential execution paths and time.

To achieve this, we design an instrumentation tool memdif,
which uses an individual bitmap to collect bitmap information
for each iteration. The memdif instruments the program (i.e.,
TVM), and when the execution enters one edge, the corre-
sponding position in the bitmap is set to True. We compress the
bitmap where one bit represented a byte and design a function
to calculate the number of different bits between bitmaps.

How do we measure the value of executions? Besides
collecting information, we require a standard to assess the
value of executions for efficient bug detection. Given the abun-

dance of differential executions, we employ priority-guided
heuristics to determine their value and apply a strict standard
for the seed schedule. As both collected time and execution
paths hold equal importance, we propose the use of diffit
(differential fitness) and two hyperparameters to balance the
weights, thereby exposing more differential execution paths
and time differences. In each iteration, we calculate the diffit
to determine the value of execution and maximize its value.
To enhance efficiency, we have designed a roulette wheel
algorithm to select higher-priority seeds.

To demonstrate the effectiveness of DeepDiffer, we conduct
evaluations using the same benchmarks with TVMFuzz and
Tzer. The experimental results clearly indicate that our ap-
proach achieves higher coverage and exposes a greater number
of bugs compared to the other fuzzers. In total, we discovered
12 bugs belonging to 9 different categories of root causes,
surpassing the performance of existing fuzzers. The bugs we
identified exhibit diverse error characteristics, emphasizing the
significance of bug detection in DL compilers.

In summary, the primary contributions of this work are as
follows:
• We propose the first priority-guided differential testing

framework for DL compiler testing. We propose a new type
of DL compiler coverage to maximize the difference and a
new metric to determine seed selection and schedule.

• We have compared DeepDiffer against existing low-level
IR fuzzers for testing TVM, the experimental results show
that DeepDiffer outperforms existing fuzzers with higher
coverage and more bugs. DeepDiffer found 13 bugs in
TVM with 9 root causes, including 9 bugs that were
first detected, and we have reported our findings to the
developers of TVM. DeepDiffer has been open-sourced at:
https://github.com/KuiliangL/DeepDiffer.

2. BACKGROUND

2.1. Deep Learning Compilers

Deep learning (DL) has emerged as an effective approach
to solving problems in various domains, such as autonomous
driving cars [16], software engineering [17], [18], and health
care [19], [20]. Several deep learning frameworks including
TensorFlow [21], Keras [22], and PyTorch [23], have been
developed to facilitate the implementation of DL models.
Moreover, various kinds of hardware like NNP [24] have been
designed to accelerate the execution of these models.

To achieve this acceleration, DL compilers are designed to
take a DL model as input and generate hardware-optimized
code as the output for execution on the deployed hardware.
DL compilers also leverage third-party mature tool-chains to
improve portability. Fig.1 illustrates the general architecture
of the DL compiler, which comprises the following stages.

Model Loading: A stage is responsible for loading a DL
model and transforming it into a computation graph represen-
tation (i.e., high-level IR). The purpose of the high-level IR is
to construct the control flow and the dependency between data
and operators, while also providing an interface for graph-level

617

Model�Loading

data

conv2d

flatten

relu

add

...

High-level�Optimization

op1=�primFunc([x,y]){

for(ax0:int32,0,32){

��for(ax1:int32,0,45){

...�����}

���}

}

op2=�primFunc([x,y]){

for(ax0:int32,0,27){

��for(ax1:int64,0,43){

...�����}

���}

}

Low-level�Optimization Target�Code

Figure 1. Architecture of DL compilers

optimizations [11]. Each node in the computational graph is
represented by one or several IR expressions.

High-Level IR Transformation: A stage responsible for
conducting hardware-independent optimizations on high-level
IR to reduce redundancy and improve efficiency. DL compilers
optimize the computational graph represented in high-level IR
and generate optimized IR for further optimization.

Low-Level IR Transformation: A stage that conducts
hardware-specific optimization is responsible for improving
efficiency and generates optimized code for target hardware.
This stage’s optimizations can include hardware intrinsic map-
ping, memory allocation, latency hiding, loop-related opti-
mizations, etc. [25], [11]. It can also directly transform the
high-level IR to third-party tool-chains for optimizations [11].

2.2. Fuzzing

Fuzzing [26] is a widely used technique for detecting
software bugs and vulnerabilities. The primary concept behind
fuzzing is to generate random inputs and test programs to
explore unexpected behaviors. Many fuzzers [27], [28], [29]
use code coverage as a metric to evaluate fuzzy processes.
The fundamental assumption of using coverage is that finding
more execution states (e.g., new coverage) will increase the
probability of detecting bugs [30]. For example, AFL [31] is
a coverage-guided tool that has identified numerous vulnera-
bilities in diverse applications. Code coverage has been widely
recognized as one of the most widely used metrics to evaluate
software testing techniques.

2.3. Differential Testing

Differential testing is a mature testing technology for large
software systems: a test case is randomly generated, and
the output is compared for similar systems. The main goal
of differential testing is to identify bugs by observing the
asymmetries between different implementations of the same
functionality when provided with the same input. There are
three widely-used differential-testing strategies in compiler
testing [32]:

Cross-compiler strategy: This strategy compares results
by different compilers to detect compiler bugs. For example,
RandIR [33] uses random instances of the given IR as inputs
to detect Scala bugs via cross-compiler differential testing.

Cross-optimization strategy: This strategy compares re-
sults by using different optimizations implemented in a single

compiler to detect compiler bugs. For example, Sassa and
Sudosa [34] use the cross-optimization strategy and detect
compiler bugs by comparing traces of important values before
and after the program optimization.

Cross-version strategy: This strategy compares results
produced by different versions of a single compiler to detect
compiler bugs. Chen et al. [35] propose to test JVM imple-
mentations via differential testing, focusing on the startup pro-
cesses of JVM. Their approach uses a cross-compiler strategy
and cross-version strategy to detect JVM discrepancies.

2.4. Mutation Strategies

The main idea of program mutation is to modify parts of an
existing test program to generate a new test program. In our
mutation strategies, we draw inspiration from Tzer’s design.
We believe that Tzer’s mutation strategies are highly represen-
tative, and their experiments also demonstrate the superiority
of their work. There are three types of strategies: general
mutation, domain-specific mutation, and pass mutation.

For the IR mutation, constraints are introduced for mutations
to ensure syntactic correctness and mitigate semantic errors.
Generating invalid programs might not be very useful for
testing compilers since a program undergoes multiple pro-
cessing stages within the compiler. if a compiler is presented
with an invalid input program, then the program tends to
get discarded in the initial stages of the processing [32]. We
use 3 general mutation strategies: Insertion, Deletion, and
Flip. For the domain-specific mutation strategies, we choose
several DL-specific Python APIs and mutate them, such as
loop nesting, memory operation, and assertion operation.
DeepDiffer mutates the pass consequences by combining the
pass consequences.

1 i n l i n e TryCons tFold<t i r : : Sub>(Pr imExpr a , Pr imExpr b){
2 i f (pa && pb){
3 i n t 6 4 t r e s = pa−>v a l u e − pb−>v a l u e ;
4 r e t u r n IntImm (r t y p e , G e t F o l d R e s u l t I n t 6 4 R e p r (r e s , r t y p e))
5 }
6 . . .
7 }
8 i n l i n e i n t 6 4 t G e t F o l d R e s u l t I n t 6 4 R e p r (i n t 6 4 t x , c o n s t

DataType& d t y p e) {
9 i f (d t y p e . b i t s () < 64) {

10 x &= (1LL << d t y p e . b i t s ()) − 1 ;
11 }
12 . . .
13 r e t u r n x
14 }

Listing 1. Motivation example of version 1

1 IntImm : : IntImm (DataType dtype , i n t 6 4 t va lue , Span span) {
2 . . .
3 i f (d t y p e . i s u i n t ()) {
4 ICHECK GE(va lue , 0U) ;
5 }
6 }
7 i n l i n e TryCons tFold<t i r : : Sub>(Pr imExpr a , Pr imExpr b){
8 . . .
9 i f (pa && pb){

10 r e t u r n IntImm (r t y p e , pa−>v a l u e − pb−>v a l u e) ;
11 }
12 . . .
13 }

Listing 2. Motivation example of version 2

618

3. MOTIVATION EXAMPLES

In this section, we illustrate the rationale behind our ap-
proach by using a buffer overflow bug example in TVM,
which is related to the absence of checks about unsigned 32-bit
values.

To trigger this problem, we execute a reduction operator
that involves reducing a large unsigned 32-bit integer using
a smaller unsigned 32-bit integer. As depicted in Listing 1
and Listing 2, the handling of the reduction operator varies
across different versions. TVM defines the IntImm type and
employs checks on the unsigned integer’s value to ensure
the accuracy of the interval (line 3, line 4 in Listing 2).
Listing 1 represents the source code of the latest version 1.
In this version, when TVM handles the reduction operator
with an unsigned 32-bit integer parameter, it executes the
GetFoldResultDoubleRepr function (line 4). In this
function, TVM checks the dtype’s bit number (line 9). As
our parameter is a 32-bit integer, TVM converts the parameter
x, which is the reduction result (line 10). However, TVM does
not validate the parameter’s value, leading to a buffer overflow
and returning a wrong value. The compiler returned the value
of the reduction result plus INT_MAX. Listing 2 shows the
early version 2. In this version, TVM performs the reduction
calculation and passes the result to the IntImm function (line
10). Then TVM detects the error and throws the exception
since the result is a negative number, violating the definition
of an unsigned integer (line 3, line 4).

Due to the incorrect arithmetic value returned by this
error, it did not exhibit obvious characteristics and was not
directly related to the optimization logic. As a result, TVM
did not trigger any exceptions and even when executed at
different optimization levels, no differences were revealed.
Consequently, this incorrectly compiled model went unnoticed
by the existing work Tzer’s oracles, and the existing fuzzers
were unable to detect this wrong code bug. In our paper,
we identify this bug by comparing the compilation results
obtained from two different compilers.

If we want to effectively detect this category of bugs, there
are two challenges. First, the approach must detect the error
characteristic of bugs, although some bugs are not caught
by TVM and do not reveal differences even in the different
optimization levels. Second, the approach must select seeds
that have a high quality of revealing error characteristics. In
this paper, we design and implement DeepDiffer to solve these
challenges.

4. APPROACH

In this section, we introduce the conceptual framework of
DeepDiffer, a priority-guided DL compiler fuzzer for dif-
ferential testing. DeepDiffer conducts differential testing of
different versions of TVM compilers. The illustrative depiction
of DeepDiffer’s architecture is presented in Fig.2. DeepDiffer
stands as a client-server framework that compiles the IR file
in parallel. The client has a seed pool, mutators, oracles, and
other components. The server shoulders the responsibility of
execution, which is used to receive the messages of the IR-Pass

pair, compile the seed, build the model and transmit results to
the client.

DeepDiffer first selects an IR-Pass pair from the seed pool
(1). The chosen seed undergoes mutation, resulting in the
creation of a novel mutated seed (2). The mutated seed
is subsequently dispatched to the different TVM compilers
for compilation and execution (3). During compilation and
transmission, DeepDiffer conducts differential testing by com-
piling the same seed with different DL compilers. It collects
and compares differential messages, including the compilation
results, build time, and the differential coverage branches
(4). Based on the collected information, DeepDiffer derives
diffit (differential fitness) (5). Our goal is to maximize diffit
aiming to pinpoint vulnerable seeds. Collected messages aid
in deciding whether the mutated seed should be put into the
seed pool as determined by a comparison of the diffit (6).
We set two controls for limiting the mutations. Seeds that
do not increase differences many times have their diffit reset
to the initial priority, permitting further file mutations (1).
Test oracles are employed to detect potential bugs (7). Input
pairs that contravene test oracles are identified and reported for
debugging purposes (8). Algorithm 1 shows the details of
the fuzzing loop, and we will further explain it in the following
subsections.

Algorithm 1 Fuzzing Loop
Input: Set of initial seed S0, budget time T , pass control Qmax, IR

control Imax

1: S ← S0

2: while time budget T do
3: (F , P , D, I , Q) ← ROULETTEWHEELSELECT(S)
4: F ′ ← MUTATEIR(F)
5: diffinfo1 ← RUNTVM1(F ′, P)
6: diffinfo2 ← RUNTVM2(F ′, P)
7: D′ ← CALCDIFF(diffinfo1, diffinfo2)
8: if ∃error then
9: REPORT(F ′, P)

10: else if D′ > D then
11: S ← S ∪ (F ′, P , D′, 0, 0)
12: S.UPDATE(F , P , D, 0, 0)
13: else
14: S.UPDATE(F , P , D, I + 1, Q)
15: if I ≥ Imax and Q < Qmax then
16: P ′ ← MUTATEPASS(P)
17: diffinfo1 ← RUNTVM1(F , P ′)
18: diffinfo2 ← RUNTVM2(F , P ′)
19: D′ ← CALCDIFF(diffinfo1, diffinfo2)
20: if ∃error then
21: REPORT(F , P ′)
22: else if D′ > D then
23: S.UPDATE(F , P ′, D′, 0, 0)
24: else
25: S.UPDATE(F , P , D, I , Q+ 1)
26: if I ≥ Imax and Q ≥ Qmax then
27: S.UPDATE(F , P , D0, 0, 0)

4.1. Seed Schedule

Regarding the seed pool, each input for DeepDiffer is
represented by a tuple 〈F , P , D, I , Q〉, where F represents

619

Client

Server

seed�pool

IR
Pass�seq

≠

Seed
schedule
① Mutate②

diffit�priority��Priority�guide Calculate�diffit⑤⑥

Build
Execution

Feedback
comparison Test oracles Repo� bug③ ④

⑦ ⑧

build:��True

time:��0.24

difcov:��23041

build:��False

time:��0.39

difcov:��18496

IR1

Pass�seq
mutator

IR2

Pass�seq

Figure 2. System Overview

an IR file, P represents the sequence of passes for the IR,
D represents the diffit value, and two controls I , Q are
employed for managing the IR and pass mutations. DeepDiffer
first initializes the seed pool with I and Q set to zero, and
initial diffit D0=1 for all seeds. In each iteration, DeepDiffer
selects a high-priority seed and avoids local optimum utilizing
the priority-guided roulette wheel algorithm (1 in Fig.2).
Algorithm 2 delineates the intricacies of the roulette wheel al-
gorithm. The process commences by summing the diffit values,
followed by the random generation of a probability denoted
as p. Subsequently, the probability of each seed is computed,
and a comparison is drawn to calculate the index of the chosen
seed. Once chosen, the seed is subjected to mutation through
the random selection of a mutator. DeepDiffer uses sockets
to transmit the seed pair and the seed is then compiled and
executed in different TVM compilers (2 , 3 in Fig.2).

For each IR file, successful compilation in both versions
is a prerequisite. Furthermore, if the mutation results in an
increased differential, we retain the mutated seed to control
the seed pool’s size because of the numerous differences. We
then reset the control value of the selected seed to zero since
this mutation is rewarding. If this mutation fails to augment
the differential, we increment the corresponding control value.
DeepDiffer also seeks a better P ′ to pair with F upon reaching
the threshold value of Imax. If a seed fails to increase the diffit
after undergoing mutations for Imax and Qmax cycles, the
diffit value is reset to its initial state, and the control value is
reset to zero, facilitating further file mutations and diminishing
the current seed’s priority (6 , 1 in Fig.2).

Algorithm 2 Roulette Wheel Algorithm
Input: Set of initial seed S0

Output: the index of the seed and the chosen seed
1: S ← S0

2: p ← RANDOM(0, 1)
3: sum ←

∑
iSi(D)

4: r ← 0, idx ← 0
5: while r ≤ p do
6: r ← r + Sidx(D)

sum
7: idx ← idx+ 1
8: return idx, Sidx

4.2. Comparison and Diffit

In this paper, we undertake a comparative analysis of
different compiler versions. We subject the compilers to the
same seeds for compilation, then evaluate and contrast the
outcomes, including build time and coverage branches aiming
to gather differential information pertaining to these compilers
(4 in Fig.2). To facilitate this, we introduce a coverage
instrumentation tool named memdif, which is an extension of
LLVM’s Sanitizer Coverage and memcov [14]. The memdif
employs an individual bitmap to capture coverage branches for
each iteration thereby enabling an approximate calculation of
differential coverage for the DL compiler. This “DL compiler
differential coverage” is branches that exhibit uniqueness
in the different versions. We approach this feedback as an
optimization problem and introduce the concept of the diffit:

diffit = a ∗ cov1 ∪ cov2 − cov1 ∩ cov2
cov1 ∪ cov2

+ b ∗ |t1 − t2| (1)

The hyperparameters a and b serve the purpose of balancing
the two objectives. The first part indicates the ratio of DL com-
piler differential coverage to the combined total of branches.
This quantification assesses differences in collected coverage
data. Given the structural similarity between the two chosen
versions of TVM, we infer a corresponding similarity in
their gathered coverage data. Therefore we can compare their
program execution paths. Distinct execution paths potentially
reflect varying code logic or structural updates, potentially
revealing and pinpointing prospective errors. The subsequent
part represents the temporal discrepancy observed during the
compilation of the two compiler versions. Compilation time
stands as a pivotal gauge of compiler efficiency. Thus, we
employ these factors to construct diffit. The diffit is applied
to the quantification of the seed values thereby informing
our determination of seed selection and schedule. In our
experiment, the majority of the diffit distribution ranges from
1 to 10.

4.3. Oracle Handling

Test oracle serves as a crucial mechanism for assessing
the success or failure of a test. In this paper, we encompass

620

a total of four test oracles. These oracles draw inspiration
from Tzer’s design, which we have modified in accordance
with our comparative analysis. By comparison, any test case
that violates test oracles is reported and the reproduction and
localization of bugs are achieved through manual analysis.
(8 in Fig.2).

Result Inconsistency: DeepDiffer conducts comparisons
between two versions and different optimization levels. For
each generated input file, DeepDiffer submits it to the distinct
DL compilers for compilation and compares their results. An
inconsistency bug is identified if the absolute or relative error
surpasses the predefined threshold.

Performance Inconsistency: DeepDiffer assesses timing
disparities between two versions and different optimization
levels. It quantifies the build time for each compiler version.
We set up a defined performance threshold. If the time
difference surpasses this margin or the optimized IR has a
slower running speed compared to the unoptimized IR, it is
identified as a potential performance error.

Dead Loop Problem: While in the compilation phase,
DL compilers might continue running without properly termi-
nating or producing outcomes. To circumvent the possibility
of the fuzzing process becoming stuck or consuming an
excessive time budget, DeepDiffer establishes a maximum
time threshold. Should the compiler’s runtime exceed this
threshold, it is identified as a dead loop error.

Runtime Failure: Crashes or unexpected exceptions repre-
sent errors requiring Oracle intervention, which we classify as
runtime failures. This error is identified by the examination of
exitcode.

5. IMPLEMENTATION

Due to code modifications and environment dependencies,
incompatible errors arose during our architecture implementa-
tion. Running TVM requires setting the Python environment
PYTHONPATH to specify the library’s location. As a result,
the terminal continuously runs TVM with the bound version
and could not switch to another version until program termi-
nation. To overcome this limitation, we employ a client-server
framework, enabling parallel fuzzing to enhance efficiency.
Furthermore, we selected two of the latest versions with
identical fields as TVM employed JSONReader and related
functions to parse IR files and these two latest versions had
more undiscovered potential errors. Parsing the IR with fields
not recognizable by JSONReader triggers exceptions that
TVM could not find related fields. During the transmission,
we convey the names of PassNode and reconstruct them in
server terminals to address “bad function call” errors in pass
transformations, which could occur if the PassNode was not
localized within the environment. In addition, we reproduce
the passes using recorded functions manually because the
maintained passes have similar errors as well.

The seed mutation of DeepDiffer is implemented based
on Tzer’s framework. It incorporates three types of mutators,
including 3 general-purpose mutators, several domain-specific
mutators, and several pass mutators. Regarding the strategies

for IR mutation, we utilize TVM operator APIs to create sub-
expressions that meet specified constraints. Additionally, we
modify the consequences of passes to mutate passes.

To transmit IR-Pass pairs to TVM, DeepDiffer employs a
client-server framework and utilizes Python’s socket function-
ality for message transmission. Different versions of TVM
are configured as servers, while other components like the
seed pool and mutator function as clients. The client selects
a seed, applies mutations, and forwards messages to the
servers. The servers compile the data and gather information,
which is subsequently sent back to the client for comparative
analysis and bug report. We execute comparisons with the
TVM v0.10-dev (ee319d9) version and TVM v0.9 (d361585)
version, designing TVMv0.10-dev as the master version. The
fuzzing loop operates within a sub-process, continuing until
the allocated time budget is exhausted.

Based on memcov [14], we design and update the coverage
collector tools, memdif. This involves the maintenance of two
distinct bitmaps: an overall bitmap is devised to collect the
overall coverage information, while an individual differential
bitmap is engineered to collect differential information. We
compress the bitmaps whose size is the number of edges
in TVM divided by eight (byte size). we employ a Python
interface to retrieve the coverage state.

Once a test file violates the test oracles, the reporter
records essential data required for reproducing the failure,
including the selected seed, the mutated seed, IR, passes,
and the bug classifications defined manually. Upon replicating
the potential issue, tests are conducted across four versions:
TVM v0.10-dev, TVM v0.9, TVM v0.11-dev (5019dce) and
TVM v0.9-dev (8f6543e). In scenarios involving seed usage,
DeepDiffer deploys over 600 TIR functions derived from
tvm.relay.testing. If seeds are not employed, Deep-
Differ undertakes mutation with an empty function.

6. EXPERIMENT

6.1. Metrics

Our evaluation primarily focuses on the following metrics:
Coverage: Following prior studies [36], [14], [37], we trace

source-level branch coverage within the test files, measuring
total coverage counts of all hit branches. To ensure equitable
comparison, our counting exclusively occurs during the com-
pilation and execution phases, disregarding coverage during
the initialization phase. Furthermore, we enumerate differential
unique coverage branches that represent those branches that
remain uncovered by other compilers.

Bug Counting: Following prior studies [38], [14], [4], we
employ the count of distinct patches as an indicator of the
number of identified bugs.

6.2. Baselines

In order to assess the effectiveness of DeepDiffer, we
conduct a comparative analysis with fuzzers detecting low-
level IR bugs.

621

TVMFuzz: TVMFuzz is the first generation-based low-
level IR fuzzer targeting TVM. Its objective is to au-
tonomously generate various low-level IRs utilizing a user-
defined probability table for fuzzing TVM.

Tzer: Tzer is a coverage-guided and mutation-based fuzzer
tailored for TVM’s low-level IR. Tzer leverages coverage
feedback to perform joint IR-Pass mutations concentrating on
identifying bugs within low-level optimizations.

6.3. Experimental Configuration

The testbed hardware configurations include 1) Intel E5-
2650 CPU (40 threads); 2) 125 GB memory; and 3) 2TB
NVMe SSD. The operating system employed is Ubuntu18.04
and targeted DL systems are compiled using Clang 11.1.0
under release mode. The default software versions used in the
evaluation are TVM v0.10-dev and TVM v0.9.

In our evaluation, we focus on the LLVM target with TVM
being compiled under level-2 compilation. For the sake of
achieving stable coverage trends, we conduct five iterations
of experiments and subsequently average the resulting data.
Following prior research [14], we gather coverage data for all
compared techniques within the default 4-hour time allocation
using memdif. We set D0 to 1, Imax to 6 and Qmax to 1 by
default. For the RQ1 experiment, both Tzer and TVMFuzz
are tested using the TVM 0.10-dev version. Both Tzer and
DeepDiffer are configured with default settings including the
same seeds. We employ the differential test mode with Tzer
for the experiments, comparing distinct optimization outcomes
once per iteration. Since TVMFuzz does not require coverage
feedback, we execute non-instrumented TVM for 4 hours,
collecting the generated IR files. Then these files are compiled
within the instrumented TVM to collect coverage.

6.4. Research Questions

We study the following questions to evaluate DeepDiffer:
• RQ1: How is the effectiveness of DeepDiffer compared with

other fuzzing techniques in testing TVM?
• RQ2: How do different parameter settings and experimental

setups impact DeepDiffer’s effectiveness?
• RQ3: Does priority feedback contribute to the effectiveness

of DL compiler fuzzing??
• RQ4: How effective is DeepDiffer in detecting bugs?

7. EVALUATION

7.1. Coverage Efficiency

Initially, we assess the coverage trends of both DeepDiffer
and compared existing methods to ascertain whether Deep-
Differ attains superior coverage and enhanced efficiency. Fig.3
illustrates the coverage trends within the default 4-hour budget.
Fig.4 shows the coverage trends with the generation files over
the same four hours.

Fig.3 illustrates that DeepDiffer exhibits a coverage trend
similar to Tzer while surpassing Tzer in terms of coverage
counts. Both Tzer and DeepDiffer achieve higher coverage
compared to TVMFuzz. Since Tzer and DeepDiffer employ
the same seed pool and mutation strategies, their search space

0 2000 4000 6000 8000 10000 12000 14000
Time / Second

17500

20000

22500

25000

27500

30000

32500

35000

37500

Co
ve

ra
ge

DeepDiffer
Tzer
TVMFuzz

Figure 3. Comparison of time efficiency with existing work

0 10000 20000 30000 40000
Iteration

17500

20000

22500

25000

27500

30000

32500

35000

37500

Co
ve

ra
ge

DeepDiffer
Tzer
TVMFuzz

Figure 4. Comparison of iteration efficiency with existing work

is identical. This observation suggests that even though Deep-
Differ does not directly utilize coverage feedback, priority-
guided feedback can enhance coverage. The coverage trends
between Tzer and DeepDiffer appear alike, yet DeepDiffer’s
trend experiences noticeable spikes in certain iterations. This
behavior might be attributed to the fact that the diffit metric
is not directly linked to coverage.

Fig.4 reveals that Tzer exhibits a quicker runtime compared
to DeepDiffer and TVMFuzz (the x-axis presents the iteration).
DeepDiffer employs the client-server framework to facilitate
message transmission and calculates the diffit, leading to
a relatively slower execution. This observation underscores
DeepDiffer’s capability to generate higher-quality tests.

Additionally, we utilize a Venn diagram to visualize the
distribution of coverage branches. Fig.5 reveals that Deep-
Differ encompasses 2221 unique branches, while Tzer and
TVMFuzz exhibit 1031 and 896 unique branches. Notably,
DeepDiffer’s tally of unique branches surpasses Tzer’s by
nearly 100% and TVMFuzz’s by 247%. This observation
underscores DeepDiffer’s capacity to uncover more unique
branches and explore deep paths.

Subsequently, we count the number of bugs and categorize
them by bug types. Table I provides a concise overview of the
bugs and bug types identified across DeepDiffer and studied

622

baselines. Notably, DeepDiffer exhibits a higher count of both
bugs and distinct bug types. Further elaboration on these
findings is presented in section 7.4.

19300

2221

20

1031 70

14520

896

DeepDifiier

Tzer TVMFuzz

Figure 5. Venn diagram of coverage

TABLE I
BUGS FOUND BY DEEPDIFFER AND EXISTING WORK

DeepDiffer Tzer TVMFuzz
Bugs 13 8 4

Bugs Type 9 7 4

7.2. Parameter Study

We evaluate the parameter seed, time budget, and control
parameters to determine the optimal configuration and test how
varying parameter settings impact the effectiveness.

Study on seeds S0: DeepDiffer has the option to utilize
either the initial seed pool or generate input files from an
empty function. Fig.6 depicts the performance of DeepDiffer
with and without the initial seeds. It is evident that the seed-
enabled version outperforms the non-seed version, primarily
due to the higher quality of seeds generated when utilizing
the seed pool. DeepDiffer within many TIR seeds introduces
greater diversity. Conversely, the non-seed DeepDiffer gener-
ates seeds iteratively, but their mutations are influenced by
early seeds, which may not contribute to the same level of
diversity. Therefore, the inclusion of an initial seed pool proves
essential for our experiments.

0 2000 4000 6000 8000 10000 12000 14000
Time / Second

20000

22500

25000

27500

30000

32500

35000

37500

Co
ve

ra
ge

DeepDiffer with seeds
DeepDiffer without seeds/

Figure 6. Impact of the seeds on DeepDiffer

0 2000 4000 6000 8000 10000 12000 14000
Time / Second

20000

22500

25000

27500

30000

32500

35000

37500

Co
ve

ra
ge

I_max=1
I_max=2
I_max=3
I_max=4
I_max=5
I_max=6
I_max=7
I_max=8
I_max=9

Figure 7. Impact of parameter Imax across time

0 2000 4000 6000 8000 10000 12000 14000
Time / Second

20000

22500

25000

27500

30000

32500

35000

37500

Co
ve

ra
ge

Q_max=1
Q_max=2
Q_max=3
Q_max=4
Q_max=5
Q_max=6
Q_max=7
Q_max=8
Q_max=9

Figure 8. Impact of parameter Qmax across time

Study on IR-Pass control: DeepDiffer takes two param-
eters to control the interleaving of IR-Pass mutation: Imax

and Qmax. To assess the influence of Imax and Qmax, we
conduct the experiments using various values of the Imax and
Qmax. Fig.7 presents detailed coverage trends associated with
different Imax values. The observations from Fig.7 indicate
that Imax =6 demonstrates the best performance while Imax

=1 exhibits the least effective performance. Fig.8 illustrates
that Qmax=1 demonstrates the best effectiveness, indicating
that frequent pass mutations do not significantly enhance
coverage. In conclusion, it is crucial to distribute the frequency
of IR and pass mutations appropriately.

Study on fuzzing time: Fig.9 depicts the coverage trend
over a span of 12 hours. As observed in Fig.9, the initial 3-
hour interval accounts for 93.4% coverage and the first 4-hour
window contributes 94.8% coverage. This indicates that our
framework is equally efficient as Tzer (the first 4-hour window
contributes 94.9% coverage) during the early phase. Given the
significant contributions observed within the 4-hour window
and prior research [14], we select 4 hours as the default time
budget.

623

0 4 8 12
Time (Hour)

22000
24000
26000
28000
30000
32000
34000
36000
38000

Ed
ge

 C
ov

er
ag

e

Figure 9. 12-hour coverage trend of DeepDiffer

0 2000 4000 6000 8000 10000 12000 14000
Time / Second

20000

22500

25000

27500

30000

32500

35000

37500

Co
ve

ra
ge

DeepDiffer no feedback/
DeepDiffer

Figure 10. Coverage trends between DeepDiffer and non-DeepDiffer

7.3. Contribution of Priority Feedback

We compare the DeepDiffer with the variant that omits the
use of priority feedback and assess their respective coverage to
demonstrate the impact of priority feedback. Fig.10 illustrates
the coverage trends, enabling us to determine the effectiveness
of the diffit. As evident from Fig.10, the diffit feedback proves
valuable in attaining higher coverage. The non-diffit variant
maintains seeds without considering the diffit comparisons.
Consequently, the non-diffit variant accumulates an excessive
number of seeds, thereby diminishing runtime efficiency and
hampering the generation of higher-quality seeds.

7.4. Bug Root Cause Analysis

To date, DeepDiffer has identified 9 root causes of bugs
as detailed in Table II. In the subsequent sections, we will
discuss representative bugs from each category and conduct
comparisons between bug categories across different baselines.

Type Error: This category of bugs pertains to type-related
issues. For example, DeepDiffer identified a mutated file
that utilized the tir.isnullptr and tir.call_intrin
functions without verifying the parameter’s dtype. When a
different dtype (such as a floating-point type) was supplied as
a parameter for compilation, TVM encountered a segmentation
fault. This occurred because the isnullptr function is
intended for integers and does not validate the dtype. A
mismatch between the provided dtype and the expected
integer dtype, resulted in the crash. Similarly, problems
arose with other functions like tir.isnan function, which is
designed for floating-point operations, and experienced similar
issues if an incorrect dtype was employed as a parameter.

Memory Error: TVM employs C++ to implement its
core components, making memory-related issues quite preva-

lent. These include problems like invalid memory ac-
cess and out-of-bounds access. DeepDiffer detected an
example where TVM failed to validate NULL param-
eters during the invocation of certain APIs such as
BufferStore(None, None, None), resulting in a
crash during function execution due to TVM’s lack of NuLL
object handling in many functions or APIs. Consequently,
when these functions receive a NULL object, a bug is triggered.

Arithmetic Error: This root cause involves incorrect nu-
merical computations, values, or usages. DeepDiffer detected
a floating-point exception when the floordiv function was
employed with a specific value. When we utilized the divide
function “x/y” where “x” is an integer and “y” is cast to
zero, TVM computed the divide function and returned zero.
In the implementation of the divide function, TVM checks the
divisor’s value to make ensure it’s not zero. We configured the
function call that returned a boolean parameter as the divisor
“y”, such as tir.isnan function. If this function returned
“True” and we cast the parameter’s dtype and converted it to
the integer dtype, the convention value became zero. How-
ever, within the division function, the zero may be transformed
into INT MAX, leading to an incorrect result. We speculate
that certain APIs are sensitive to the expression or value, which
may trigger this issue.

API Misuse: This category of bugs arises from misunder-
standings of APIs. For example, DeepDiffer discovered a bug
where execution ran significantly slow due to an unroll For
statement with an extensive loop length, resulting in a dead
loop error according to the oracle. When we tested the same
test file with alternative loop attribute keys (e.g., parallel),
the execution was swift. Thus, we infer that TVM failed to
optimize the large value effectively using the unroll attribute.

API Inconsistency: When an API deviates from the
expected behavior, it may indicate API inconsistency. A
bug was identified by DeepDiffer involving the usage of
tir.isfinite alongside the tir.call_intrin within
a For statement, which resulted in a crash error. Further inves-
tigation revealed that the tir.isinf and tir.isfinite
functions were designed to be composed of tir.abs and
tir.isnan functions. Other functions were formulated to
implement the corresponding APIs. The issue arose from an
inconsistency in the function sizes, with tir.infinite
having an additional size of 2, while the size of the referenced
called function was 1. This inconsistency led to a crash
scenario.

Exception Handle: This category of bugs occurs when the
compiler does not provide correct or precise error messages,
and sometimes fails to throw an exception when it should
or not should. DeepDiffer found a bug when using certain
functions, such as the tir.exp and tir.log. When we
provided an integer variable as input, TVM did not find the
corresponding intrinsic declaration. This discrepancy arises
because some functions are designed for floating-point while
some functions are designed for integers. TVM does not design
the exception to handle wrong, leading to unclear error mes-
sages. In the case of buffer flow errors, TVM does not validate

624

TABLE II
SUMMARY OF BUGS FOUND BY DEEPDIFFER AND BASELINES

Route Cause Description DeepDiffer Tzer TVMFuzz
Type Type mismatch with functions ✓ ✓

Memory Crash when the parameter is NULL ✓ ✓ ✓
AE Cast zero in the divisor convert to another value ✓
AE Float point error when big integer divide -1 ✓ ✓ ✓

API misuse Bad performance when using the specific loop interval ✓
API misuse Bad performance when using the Unroll loop type ✓ ✓
API misuse Bad performance when using the UnrollLoop pass ✓ ✓

API-I Inconsistency with the size when calling the tir.isfinite ✓ ✓
Exception handle Wrong error messages when using the TIR function ✓ ✓ ✓

Buffer overflow Overflow when using the reduction that results in a negative
unsigned 32-bit value ✓

Buffer overflow Overflow when claiming a unsigned 32-bit const integer ✓

Code logic Different results when conducting the attribute and IfThenElse
statement ✓

Assignment Error Crash if the variable is not certain in LetStmt ✓ ✓ ✓

AE: Arithmetic Error; API-I: API Inconsistency

the dtype when casting unsigned integer values, resulting
in buffer overflow errors. This issue could be mitigated by
implementing additional checks.

Buffer Overflow: DeepDiffer identified two buffer overflow
errors within TVM. In addition to the motivation example,
another scenario arises when declaring an unsigned constant
value. TVM utilizes the tir.const function to declare
constants by invoking MakeConstScalar function. During
this process, TVM examines the type of the parameter. If the
parameter is unsigned, TVM casts it to an unsigned 64-bit
type. If the cast value surpasses the INT_MAX, TVM then
converts the value to a 32-bit type. In a specific case where
an unsigned 32-bit integer negative constant value is claimed,
TVM matches the dtype and performs the cast operation,
but neglects to verify the validity of the unsigned int value.
This results in a buffer overflow occurrence. It is the user’s
responsibility to avoid declaring negative unsigned integers but
we suggest that we can add some assertions to identify these
problems.

Code Logic Error: Logic errors are issues within a program
that cause it to deviate from its intended purpose. DeepDiffer
detected a code logic error during the execution of an if-then
statement. This statement encompassed a condition and two
statements, AttrStmt and IfThenElse statement. Upon
investigation, we observed that in cases where the condition
evaluates to false, the associated AttrStmt statement would
not be checked as intended. We devised an expression in-
volving the reduction of an unsigned 32-bit integer value by
a larger unsigned 32-bit integer value or a division by zero
operation as a parameter of AttrStmt. In the TVM 0.10-
dev version, the attribute statement goes unchecked, leading to
the absence of an error trigger. However, in the TVM 0.9-dev
version, careful scrutiny of the two statements results in error
detection. The reason behind this discrepancy lies in TVM’s
behavior of omitting attribute value checks in some conditions.

Assignment Error: DeepDiffer has identified a bug stem-
ming from situations where variables lack proper initialization

or are not correctly assigned or bound. Consider the case
of “let v= v≥0?1:2”. In this scenario, the variable “v” is
associated with a condition that determines its value. Different
conditions yield distinct values, yet TVM failed to interpret
the condition due to the absence of a specific value for the
variable. This led to TVM throwing a segmentation error.

8. RELATED WORK

Traditional Compiler Testing: Numerous traditional tech-
niques have been developed and have achieved significant
success in many domains. For instance, AFL [31] and Lib-
Fuzzer [10] are widely-used binary fuzzers that incorporate
CFG tools to detect bugs across various applications. These
tools primarily take programs as inputs and do not account
for DL optimizations. As a result, they encounter challenges
when parsing DL models.

DL Compiler Testing: Several works are dedicated to
detecting bugs at the high-level stage. MT-DLComp [39]
leverages metamorphic testing and mutates the existing models
to identify bugs. HirGen [12] and NNSmith [40] focus on
model generation techniques, extracting high-level IR con-
straints to guide model generation. they add or replace a new
node in the computation graph and verify whether operators
violate constraints. TVMfuzz [4] learns from the API call
dependencies and mutates the API to create new unit tests.

Although certain testing techniques for DL frameworks are
not specifically designed to detect compiler bugs, they can still
be applied to detect compiler bugs, particularly at the high-
level stage. For instance, LEMON [41] tests DL frameworks
by mutating Keras models. Some techniques target fuzzing DL
operators but they may struggle to detect bugs in high-level
optimizations [40], such as FreeFuzz [42], ACETest [43], etc.

Some works focus on detecting bugs in the low-level stage.
TVMFuzz [13] is the first fuzzer targeting TVM. TVMFuzz
generates TIR expressions randomly based on user-defined
grammar rules. Tzer [14], on the other hand, utilizes coverage

625

feedback and conducts IR-Pass mutation to detect bugs in
TVM.

9. CONCLUSION

DL compiler bugs exhibit a wide range of error char-
acteristics, some of which are challenging to identify and
can lead to significant consequences. In response, we have
developed a priority-guided differential testing framework for
TVM. We present DeepDiffer, a testing framework based
on Tzer, designed to target low-level IR defects within the
TVM compiler. The evaluation demonstrates that DeepDiffer
outperforms other Low-level IR fuzzers, Tzer and TVMFuzz.
To date, we have identified 13 bugs with 9 root causes, and
9 of these bugs were detected for the first time. Our findings
have been confirmed by the TVM community’s developers and
we hope our work will continue to enhance the reliability of
the DL compilers.

ACKNOWLEDGMENT

This work was supported by National Natural Sci-
ence Foundation of China under Grant No. 62372268,
Shandong Provincial Natural Science Foundation (No.
ZR2020MF055, No. ZR2021LZH007, No. ZR2022LZH013,
No. ZR2020QF045), Jinan City ”20 New Universities” Fund-
ing Project (2021GXRC084), the Zhejiang Provincial Natural
Science Foundation of China under Grant No. LY22F020022,
and the National Natural Science Foundation of China under
Grant No. 61902098.

REFERENCES

[1] Tvm. https://tvm.apache.org/, 2021.
[2] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret

Catron, Summer Deng, Roman Dzhabarov, Nick Gibson,
James Hegeman, Meghan Lele, Roman Levenstein, et al.
Glow: Graph lowering compiler techniques for neural
networks. arXiv preprint arXiv:1805.00907, 2018.

[3] Wei Liu, Haikun Liu, Xiaofei Liao, Hai Jin, and
Yu Zhang. Ngraph: Parallel graph processing in hybrid
memory systems. IEEE Access, 7:103517–103529, 2019.

[4] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang
Tian, Shing-Chi Cheung, and Xiang Chen. A com-
prehensive study of deep learning compiler bugs. In
Proceedings of the 29th ACM Joint meeting on european
software engineering conference and symposium on the
foundations of software engineering, pages 968–980,
2021.

[5] Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang
Huang, Dingyi Fang, Xiaoyang Sun, Lizhong Bian,
Haibo Wang, and Zheng Wang. Automated conformance
testing for javascript engines via deep compiler fuzzing.
In Proceedings of the 42nd ACM SIGPLAN international
conference on programming language design and imple-
mentation, pages 435–450, 2021.

[6] Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T
Johnson, and Christoph Csallner. Slemi: Equivalence
modulo input (emi) based mutation of cps models for
finding compiler bugs in simulink. In Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, pages 335–346, 2020.

[7] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong,
Hongyu Zhang, and Lu Zhang. History-guided configura-
tion diversification for compiler test-program generation.
In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 305–316.
IEEE, 2019.

[8] Cen Zhang, Yuekang Li, Hongxu Chen, Xiaoxing Luo,
Miaohua Li, Anh Quynh Nguyen, and Yang Liu. Biff:
Practical binary fuzzing framework for programs of iot
and mobile devices. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), pages 1161–1165. IEEE, 2021.

[9] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted
mutation strategy for increasing greybox fuzz testing
coverage. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering,
pages 475–485, 2018.

[10] Kosta Serebryany. Continuous fuzzing with libfuzzer and
addresssanitizer. In 2016 IEEE Cybersecurity Develop-
ment (SecDev), pages 157–157. IEEE, 2016.

[11] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin
You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen
Yang, and Depei Qian. The deep learning compiler: A
comprehensive survey. IEEE Transactions on Parallel
and Distributed Systems, 32(3):708–727, 2020.

[12] Haoyang Ma, Qingchao Shen, Yongqiang Tian, Junjie
Chen, and Shing-Chi Cheung. Fuzzing deep learning
compilers with hirgen. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing
and Analysis, pages 248–260, 2023.

[13] David Pankratz. Tvmfuzz: Fuzzing tensor-level interme-
diate representation in tvm. https://github.com/dpankratz/
TVMFuzz, 2020.

[14] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and
Lingming Zhang. Coverage-guided tensor compiler
fuzzing with joint ir-pass mutation. Proceedings of the
ACM on Programming Languages, 6(OOPSLA1):1–26,
2022.

[15] Xiaogang Zhu and Marcel Böhme. Regression greybox
fuzzing. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2169–2182, 2021.

[16] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong
Xiao. Deepdriving: Learning affordance for direct per-
ception in autonomous driving. In Proceedings of the
IEEE international conference on computer vision, pages
2722–2730, 2015.

[17] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen
Chu. Benchmarking state-of-the-art deep learning soft-
ware tools. In 2016 7th International Conference on

626

Cloud Computing and Big Data (CCBD), pages 99–104.
IEEE, 2016.

[18] Cody Watson, Nathan Cooper, David Nader Palacio,
Kevin Moran, and Denys Poshyvanyk. A systematic
literature review on the use of deep learning in software
engineering research. ACM Transactions on Software
Engineering and Methodology (TOSEM), 31(2):1–58,
2022.

[19] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar,
Volodymyr Kuleshov, Mark DePristo, Katherine Chou,
Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff
Dean. A guide to deep learning in healthcare. Nature
medicine, 25(1):24–29, 2019.

[20] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian
Jiang, and Joel T Dudley. Deep learning for healthcare:
review, opportunities and challenges. Briefings in bioin-
formatics, 19(6):1236–1246, 2018.

[21] Tensorflow. https://www.tensorflow.org/, 2021.
[22] Keras. https://keras.io/, 2021.
[23] Pytorch. https://pytorch.org/, 2021.
[24] Brian Hickmann, Jieasheng Chen, Michael Rotzin, An-

drew Yang, Maciej Urbanski, and Sasikanth Avancha.
Intel nervana neural network processor-t (nnp-t) fused
floating point many-term dot product. In 2020 IEEE
27th Symposium on Computer Arithmetic (ARITH), pages
133–136. IEEE, 2020.

[25] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. Tvm:
An automated end-to-end optimizing compiler for deep
learning. arXiv preprint arXiv:1802.04799, 2018.

[26] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a
survey. Cybersecurity, 1(1):1–13, 2018.

[27] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1032–
1043, 2016.

[28] Qian Yang, J Jenny Li, and David Weiss. A survey of
coverage based testing tools. In Proceedings of the 2006
international workshop on Automation of software test,
pages 99–103, 2006.

[29] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu.
Superion: Grammar-aware greybox fuzzing. In 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 724–735. IEEE, 2019.

[30] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang
Xiang. Fuzzing: a survey for roadmap. ACM Computing
Surveys (CSUR), 54(11s):1–36, 2022.

[31] American fuzzing lop (afl). https://lcamtuf.coredump.cx/
afl/, 2018.

[32] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong,
Hongyu Zhang, Dan Hao, and Lu Zhang. A survey
of compiler testing. ACM Computing Surveys (CSUR),
53(1):1–36, 2020.

[33] Georg Ofenbeck, Tiark Rompf, and Markus Püschel.
Randir: differential testing for embedded compilers. In
Proceedings of the 2016 7th ACM SIGPLAN Symposium
on Scala, pages 21–30, 2016.

[34] Masataka Sassa and Daijiro Sudosa. Experience in
testing compiler optimizers using comparison checking.
In Software Engineering Research and Practice, pages
837–843. Citeseer, 2006.

[35] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su,
and Jianjun Zhao. Coverage-directed differential testing
of jvm implementations. In proceedings of the 37th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 85–99, 2016.

[36] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2329–
2344, 2017.

[37] Marcel Böhme, László Szekeres, and Jonathan Metzman.
On the reliability of coverage-based fuzzer benchmark-
ing. In Proceedings of the 44th International Conference
on Software Engineering, pages 1621–1633, 2022.

[38] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Ling-
ming Zhang. Free lunch for testing: Fuzzing deep-
learning libraries from open source. In Proceedings of the
44th International Conference on Software Engineering,
pages 995–1007, 2022.

[39] Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang,
and Shuai Wang. Metamorphic testing of deep learning
compilers. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 6(1):1–28, 2022.

[40] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang
Li, Aurojit Panda, and Lingming Zhang. Nnsmith:
Generating diverse and valid test cases for deep learning
compilers. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 530–
543, 2023.

[41] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and
Dongdi Zhang. Deep learning library testing via effective
model generation. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, pages 788–799, 2020.

[42] Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Ling-
ming Zhang. Fuzzing deep-learning libraries via auto-
mated relational api inference. In Proceedings of the
30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, pages 44–56, 2022.

[43] Jingyi Shi, Yang Xiao, Yuekang Li, Yeting Li, Dongsong
Yu, Chendong Yu, Hui Su, Yufeng Chen, and Wei Huo.
Acetest: Automated constraint extraction for testing deep
learning operators. arXiv preprint arXiv:2305.17914,
2023.

627

