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Abstract—Cloud computing enables developers to deploy and
host applications without focusing on installing and maintain-
ing the infrastructure. The developers can utilize the services
provided by the cloud service providers (CSPs) to offer scal-
able solutions to customer applications. As a result, CSPs are
deluged with different batches of cloudlets (tasks) from diverse
customer applications. Therefore, developing an algorithm that
selects and processes applications intelligently to minimize
the execution time and maximize the throughput becomes
challenging. Many researchers have shown the round-robin
(RR) scheduling algorithm variants to tackle this problem. One
such variant is the dynamic RR heuristic algorithm (DRRHA)
that utilizes the mean of the burst times (BTs) of cloudlets
in the ready queue (RQ) to calculate the time quantum (TQ).
However, DRRHA has not considered skewness. This paper
introduces a novel skewness-based RR algorithm (SRRA) for
cloudlet scheduling. The algorithm dynamically determines the
TQ for each cloudlet based on the skewness of the BTs of
cloudlets in the RQ. The algorithm has two variants: SRRA
with minimum TQ (SRRA-Min) and SRRA with median TQ
(SRRA-Med). The two variants of the proposed algorithm
exhibit improved performance in terms of total execution time
(TET) and throughput compared to DRRHA, individually and
collectively. These comparisons are conducted using CloudSim
Plus under two scenarios: constant skewness with varying
cloudlets and constant cloudlets with varying skewness.

Keywords–Cloud Computing; Cloud Service Provider;
Cloudlet Scheduling; Round-Robin; Time Quantum;
CloudSim Plus; Skewness.

1. INTRODUCTION

Cloud computing is renowned for providing a variety of ser-
vices, including infrastructure, platform, and software, via the
Internet [1]. It offers cost-effective, flexible, and on-demand
solutions to support businesses of all sizes. Consequently, nu-
merous organizations have sought services from various CSPs,
such as Google, Amazon, Microsoft, Oracle, and International
Business Machines (IBM), to develop on-demand applications
without the burden of managing infrastructure and scalability
concerns [2]. Cloud significantly streamlines the software
development and deployment processes [3]. Therefore, it plays
a pivotal role in the strategic framework of any organization.
Cloud computing leverages virtualization technology to pro-
vide services to multiple customers concurrently [4]. This tech-
nology efficiently utilizes the resources of physical machines,

including storage, computation, and networking, among others
[5]. Virtualization technology enhances resource utilization,
reduces downtime and enables faster resource allocation,
which leads to energy and cost savings. It’s worth mentioning
that virtualization can be implemented at various levels, such
as operating system (OS) virtualization, server virtualization,
and hardware virtualization [6]. These services are delivered to
customers through the deployment of virtual machines (VMs),
which emulate the functionalities of physical machines [7].
Physical machine resources are allocated to VMs according
to their specific requirements. Each VM operates its own OS
and functions independently.
Customers submit applications, referred to as cloudlets, for
execution within VMs [8]. A cloudlet is typically defined by
parameters like the number of instructions to be executed, the
required processing elements, central processing unit (CPU),
random access memory (RAM), and bandwidth utilization
models [9]. Cloudlets are mapped to one or more VMs, and
an appropriate VM is selected based on factors like processing
power, bandwidth, and RAM. The challenging task is the
development of an efficient cloudlet scheduling algorithm,
which determines the order of a large set of cloudlets for
execution in a distributed and scalable environment like cloud
to achieve a predefined objective [10], [11].
The cloudlet scheduling algorithm can be broadly divided
into two types: non-preemptive scheduling algorithm and
preemptive scheduling algorithm [12]. The non-preemptive
scheduling algorithm aims to complete the selected cloudlet
without any interruption. On the contrary, the preemptive
scheduling algorithm can suspend a cloudlet intermediary
and start another cloudlet. The objectives of these schedul-
ing algorithms are to minimize the overall execution time,
overall cost and energy consumption of all the cloudlets and
maximize the resource utilization and the throughput [13].
One of the well-known preemptive scheduling algorithms in
CPU scheduling and cloud computing is the RR algorithm
[14]–[24]. RR is widely used for its fairness, simplicity and
ease of implementation. It assigns a specified execution time
called TQ to each cloudlet. TQ allows a larger cloudlet
to be completed in two or more rounds with preemption,
whereas a smaller cloudlet can be completed in the first round.
Nevertheless, selecting the appropriate TQ can be challenging
to prevent starvation [25]. On the other hand, the RR algorithm
can be implemented with static and dynamic TQ, called static
RR and dynamic RR, respectively [24]. In static RR, TQ is
fixed for each cloudlet. On the contrary, TQ is determined
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individually for each cloudlet in every round of execution.
Many researchers have presented different variants of the
RR scheduling algorithm [14]–[24]. DRRHA [23], one of
the recent algorithms, utilizes the mean BT of a batch of
cloudlets in the RQ to determine the TQ. While DRRHA
has demonstrated superior performance compared to other RR
variants in terms of turnaround time (TAT), average waiting
time (AWT) and response time (RT), it does not take into
account the skewness of the BTs of cloudlets in the RQ. This
phenomenon motivates us to think about skewness and develop
a novel skewness-based algorithm for cloudlet scheduling.
In this paper, we address the problem of assigning n cloudlets
with their resource requirements to a single VM with resource
constraints in an RR fashion. For this, we develop SRRA for
cloudlet scheduling and present its variants, SRRA-Min and
SRRA-Med. Both variants dynamically determine the TQ for
each cloudlet based on the skewness of the BTs of cloudlets
in the RQ. We consider all types of skewness, namely zero,
positive and negative, to evaluate the proposed variants over
the DRRHA algorithm regarding TET and throughput. We
compare the proposed variants individually and collectively
with DRRHA using CloudSim Plus in two scenarios: one with
a constant skewness while varying the number of cloudlets and
the other with a constant number of cloudlets while varying
the skewness to show their efficacy. The primary research
contributions are summarized as follows.
1) We develop a novel algorithm, called SRRA, for dynami-

cally calculating TQ based on different types of skewness
for cloudlet scheduling.

2) We present two variants of the proposed algorithm, called
SRRA-Min and SRRA-Med, to illustrate the influence of
negatively skewed BTs of the cloudlets within the RQ.

3) We compare the proposed algorithm with one of the re-
cent existing algorithms, DRRHA, using two performance
metrics and two scenarios.

The remaining part of this paper is structured as follows.
Section 2 provides an overview of the existing variants of
the RR scheduling algorithm for cloudlet scheduling. Section
3 introduces the CloudSim Plus environment in the model
and presents the problem statement. Section 4 introduces the
proposed algorithm, SRRA, and its two variants, SRRA-Min
and SRRA-Med, for cloudlet scheduling. Section 5 describes
the two performance metrics to evaluate the proposed and
existing algorithms, simulation environment and simulation
results in three cases and two scenarios of each case. We
conclude this paper in Section 6 by summarizing our findings
and discussing future research directions.

2. RELATED WORK

This section presents the recent studies on the well-known
RR scheduling algorithm and its determination of TQ [14]–
[24]. Wang et al. [26] have used the Hadoop platform to
implement the weighted RR scheduling algorithm. The incom-
ing cloudlets are reached to the master VM controller, which
subsequently assigns these cloudlets to the slave VM based
on the scheduling algorithm. However, they have not used the

CloudSim Plus tool. Khurma et al. [18] have proposed the
modified RR (MRR) algorithm. The TQ in MRR is calculated
based on the mean of the BTs of all the cloudlets in the RQ.
However, the first cloudlet is executed till completion. Their
results show that the MRR has improved the AWT. Banerjee
et al. [19] have improved the performance of the traditional
RR algorithm (RRA) and improved RR cloudlet scheduling
algorithm (IRRCSA). They have considered TQ for each VM
by looking into the number of cloudlets allocated to that VM.
More specifically, TQ is calculated based on the median of
the average BT of the cloudlets and the maximum BT in the
RQ. Note that each VM has its local RQ. Finally, they have
shown the results regarding TAT, AWT, resource utilization
and context switches. However, they have not followed any
BT distribution of the batch of cloudlets in RQ.
Balharith and Alhaidari [20] have performed a review on
the RR algorithms developed in CPU scheduling and cloud
computing environments. They have categorized the review
into RR based on static TQ and RR based on dynamic TQ.
They have further categorized the RR based on dynamic TQ to
dynamic TQ for each round and dynamic TQ for each process.
Some of the RR variants reported are shortest remaining burst
RR (SRBRR), amended dynamic RR (ADRR), time slice
priority-based RR (TSPBRR), IRRCSA, MRR, priority RR
and modified RR scheme with vigorous TQ. They have also
described each RR variant’s scheduling parameters, optimiza-
tion criteria, environment (CPU, cloud or both), and tools.
Jbara [21] has proposed a dynamic RR algorithm named the
eighty-five percentile RR (EFPRR). Here, cloudlets are sorted
in the non-decreasing order of BT. Then, TQ is calculated by
multiplying the cloudlets’ average BT by 0.85 (i.e., 85%). If
BT of the cloudlet is less than the TQ, then the cloudlet is
executed until completion. Otherwise, the cloudlet is placed
at the end of the RQ. The algorithm shows improved average
execution time over other algorithms.
Sanaj and Prathap [22] have presented an improved version
of the RR Algorithm (ERR), intending to enhance its per-
formance while preserving the favourable qualities of the
traditional RR algorithm intact. The TQ is calculated dynam-
ically for each cloudlet in the RQ. ERR uses the mean of
the BTs of all cloudlets in the RQ to calculate TQ. In the
subsequent rounds, the cloudlet is executed for the specified
TQ and is either shifted to the end of the RQ or completed
its execution. However, upon arrival of the first cloudlet,
it is assigned the VM and executed till completion. They
have implemented and tested their algorithm on the CloudSim
toolkit. The results show that the ERR algorithm’s AWT is
less than the conventional RR algorithm. However, they have
not examined the left or right-skewed batch of cloudlets.
Alhaidari and Balharith [23] have proposed a technique called
the DRRHA in the cloud environment. DRRHA determines
dynamic TQ for the cloudlet based on the current mean of
the BTs of cloudlets in the RQ and continues the cloudlet
based on the remaining BT. Note that the TQ is determined
for each cloudlet dynamically. They have used CloudSim Plus
to show the DRRHA’s efficacy over other RR variants, such
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TABLE I
A SUMMARY OF RELATED WORK

Article Algorithm TQ Parameters Tool
Khurma et al. (2018) [18] MRR Static AWT CloudSim
Banerjee et al. (2018) [19] RRA and IRRCSA Dynamic TAT, AWT and Context Switches CloudSim
Jbara (2019) [21] EFPRR Dynamic Execution Time CloudSim
Sanaj and Prathap (2020) [22] ERR Dynamic AWT and Execution Time CloudSim
Alhaidari and Balharith (2021) [23] DRRHA Dynamic TAT, AWT and RT CloudSim Plus

as dynamic time slice RR, improved RR algorithm, improved
RR CPU scheduling algorithm with varying TQ (IRRVQ) and
shortest job first and RR with dynamic variable TQ (SRDQ)
in terms of the TAT, AWT and RT. However, they have not
considered the skewness of the BTs of the batch of cloudlets
in the RQ into consideration. A summary of related work is
shown in Table I.
This paper presents a novel algorithm, SRRA, which is differ-
ent from the other algorithms [17]–[24] (especially, DRRHA
[23]) as follows.
1) The proposed algorithm considers different skewnesses,

namely zero, positive and negative, to calculate the dy-
namic TQ, which is not used in [17]–[24]. Specifically,
DRRHA only uses the mean for calculating the TQ of the
cloudlet in the RQ.

2) The proposed algorithm uses different dynamic TQs based
on the type of skewness in the RQ. On the contrary,
DRRHA uses only one dynamic TQ without considering
the type of skewness.

3) The datacenter broker simple class of CloudSim Plus uses
the RR policy to execute the cloudlets without considering
the cloudlet, user and provider requirements [9]. However,
the proposed algorithm incorporates such requirements.

3. MODEL AND PROBLEM STATEMENT

This section introduces the model employed in this paper and
outlines the specific problem addressed within this research’s
scope.

3.1 Model

We consider the CloudSim Plus environment for cloudlet
scheduling. This environment enables the user to create on-
demand cloudlets and VMs. CloudSim Plus provides the
features to postpone the creation of cloudlets, allowing us
to create cloudlets in the system at different time instances.
The cloudlets are submitted to the datacenter broker, which
takes the appropriate actions in response to their requirements.
Mostly, the datacenter broker allocates the cloudlets inside the
VM. The datacenter broker simple class follows the RR policy
to select the VM to execute the cloudlets. However, this class
does not consider the requirements of the cloudlet, the user and
the provider. Therefore, this paper introduces a novel policy
to deal with such requirements.

3.2 Problem Statement

Consider a set of n cloudlets, C = {C1, C2, . . . , Cn}, that are
waiting in the RQ for execution as per their arrival to the

system. Each cloudlet Ci, 1 ≤ i ≤ n, defines a set of resource
requirements, namely RAM, bandwidth, CPU or BT, storage
and many more. These resource requirements are generated in
a random manner using a pseudo-random number generator.
Moreover, we use the Gaussian distribution as a statistical
distribution to generate numbers. However, other distributions,
such as exponential, Pareto and uniform, can also be used for
the same. The problem is to assign the n cloudlets with their
resource requirements to a single VM with resource constraints
in an RR fashion, such that TET is minimized and throughput
is maximized. Many researchers have developed variants of
RR by introducing the selection of TQ to minimize the context
switches. This paper also attempts to determine an adaptable
value for dynamic TQ by monitoring the BTs of the cloudlets
within RQ, aiming to achieve the stated objectives.

4. PROPOSED ALGORITHM

This section introduces the proposed algorithm, SRRA, and
its two variants, SRRA-Min and SRRA-Med, for cloudlet
scheduling. The objective of the SRRA is to minimize the TET
and maximize the throughput. The pseudocodes of the two
variants of SRRA are shown in Algorithm 1 and Algorithm
2, respectively. The primary motivation behind the SRRA-Min
and SRRA-Med is based on Pearson’s skewness coefficient (p).
Mathematically, p of the BTs of the current batch of cloudlets
in RQ is calculated as follows (Line 4 of Algorithm 1 and
Algorithm 2) [27], [28].

p =
3× (µ−Med)

σ
(1)

where

µ =
1

n

n∑
i=1

BTi, |RQ| = n (2)

σ =

√∑n
i=1(BTi − µ)2

n
(3)

where µ is the mean, Med is the median and σ is the standard
deviation. Note that we use Gaussian distribution to generate
the BTs.
Skewness can be zero, left or right based on the BTs dis-
tribution of the current batch of cloudlets in the RQ. It is
equal to zero if the Med of BTs distribution is equal to the
µ. On the contrary, it is towards the left if the Med of BTs
distribution is greater than the µ. Similarly, it is towards the
right if the Med of BTs distribution is less than the µ. On
the other hand, if p lies between [−τ , τ ], skewness is set to
zero. The skewness is positive if p > τ . Alternatively, the BTs
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of the batch of cloudlets in the RQ are positively skewed.
The skewness is negative if p < τ . Alternatively, the BTs
of the batch of cloudlets in the RQ are negatively skewed.
Mathematically,

Skewness =


Zero if p ∈ [−τ, τ ]

Positive if p > τ

Negative if p < −τ

(4)

Selecting an appropriate value for τ is challenging and varies
concerning different applications. However, it is taken as 0.4
based on [29]. Based on the skewness, we select and assign
dynamic TQ for the execution of the cloudlets. The two
variants of SRRA are shown in the following subsections.

4.1 SRRA-Min

SRRA-Min removes ith cloudlet from the RQ and determines
the dynamic TQ based on the calculated values, namely p,
maximum BT (i.e., BTmax), minimum BT (i.e., BTmin),
mean BT (i.e., BTmean) and the nth root of the product (i.e.,
prod) of cloudlets in the RQ (Line 6 to Line 11 of Algorithm
1). Note that if only one cloudlet exists in the RQ, execute
it until completion. If skewness is zero or positively skewed,
the dynamic TQ of ith cloudlet (i.e., TQi) is calculated as
follows (Line 7 and Line 8).

TQi =
µ

2
+

µ

2×BTi
(5)

where BTi is the burst time of ith cloudlet. Note that this
calculation is similar to the DRRHA. It is noteworthy to
mention that the above TQ is applicable for p ≥ τ . If skewness
is negatively skewed (Line 9), the TQi is determined as the
minimum of the TQ calculated using the difference and
nthroot procedures (i.e., Procedure 1 and Procedure 2) in line
10. Mathematically,

TQi = min(difference(), nthroot()) (6)

In Procedure 1, the maximum, minimum, and mean BT are
calculated (Line 4, Line 5 and Line 8). Then, the TQ is
calculated based on the maximum, minimum, and mean BT
(Line 9). In Procedure 2, the TQ is calculated based on the
nth root of prod (Line 6). Note that prod is determined by
multiplying all the BTs (Line 3 to Line 5).
Once the TQ of ith cloudlet is determined, the ith cloudlet
starts its execution and continues till the TQ is over (Line
12). Then, the remaining BT is updated (Line 13). If the
remaining BT is less than the TQ, then the ith cloudlet
continues its execution (Line 14 and Line 15). Once the ith

cloudlet completes its execution, it is moved to the finished
queue (FQ) (Line 15). Otherwise, the ith cloudlet is moved
to the end of RQ (Line 16 to Line 18). On the other hand,
if the new cloudlet(s) is/are arrived, then the cloudlet(s) is/are
added to the RQ (Line 20 to Line 22). The above process is
iterated until the RQ is empty (Line 1 to Line 23).

Algorithm 1 SRRA-Min
Input(s): An RQ with n cloudlets and their properties
Output(s): A list of finished cloudlets

1: while RQ is not empty do
2: Sort the cloudlets in the non-decreasing order of their BT
3: Calculate µ, σ and Med of the sorted cloudlets
4: Set p = 3×(µ−Med)

σ
5: for each cloudlet Ci in the RQ do
6: Remove cloudlet Ci

7: if p ≥ -τ then
8: Set TQi = µ

2
+ µ

2×BTi
9: else

10: Set TQi = min(difference(RQ,BT ),
nthroot(RQ,BT ))

11: end if
12: Execute the cloudlet Ci

13: Set BTi -= TQi

14: if BTi < TQi then
15: Continue the execution of the cloudlet Ci and/or move

the cloudlet Ci to the FQ
16: else
17: Move the cloudlet Ci to the end of RQ
18: end if
19: end for
20: if new cloudlet(s) is/are arrived then
21: Add the cloudlet(s) to the end of RQ
22: end if
23: end while

Procedure 1 difference(RQ,BT )

Input(s): RQ, BT
Output(s): TQ

1: Set BTmax = −∞, BTmin = ∞ and BTmean = 0
2: Set n = RQ.size()
3: for each cloudlet Ci in the RQ do
4: Set BTmax = max(BTmax,BTi)
5: Set BTmin = min(BTmin,BTi)
6: Set BTmean += BTi

7: end for
8: Set BTmean = BTmean

n

9: Set TQ = BTmax−BTmin+2×BTmean
2

10: return

4.2 SRRA-Med

SRRA-Med removes ith cloudlet from the RQ and determines
the dynamic TQ based on the µ and Med values of cloudlets
in the RQ (Line 6 to Line 11 of Algorithm 2). Here, τ is
varied on the basis of the p value. If skewness is zero or
positively skewed, the dynamic TQ of ith cloudlet (i.e., TQi)
is calculated as per SRRA-Min (Line 7 and Line 8). It is
noteworthy to mention that the above TQ is applicable for p
≥ τ . If skewness is negatively skewed (Line 9), the TQi is
determined based on the Med (Line 10). Mathematically,

TQi =
Med

2
+

Med

2×BTi
(7)

Once the TQ of ith cloudlet is determined, the ith cloudlet
starts its execution and continues till the TQ is over (Line
12). Then, the remaining BT is updated (Line 13). If the
remaining BT is less than the TQ, then the ith cloudlet
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Procedure 2 nthroot(RQ,BT )

Input(s): RQ, BT
Output(s): TQ

1: Set prod = 1
2: Set n = RQ.size()
3: for each cloudlet Ci in the RQ do
4: Set prod ×= BTi

5: end for
6: Set TQ = n

√
prod

7: return

Algorithm 2 SRRA-Med
Input(s): An RQ with n cloudlets and their properties
Output(s): A list of finished cloudlets

1: while RQ is not empty do
2: Sort the cloudlets in the non-decreasing order of their BT
3: Calculate µ, σ and Med of the sorted cloudlets
4: Set p = 3×(µ−Med)

σ
5: for each cloudlet Ci in the RQ do
6: Remove cloudlet Ci

7: if p ≥ -τ then
8: Set TQi = µ

2
+ µ

2×BTi
9: else

10: Set TQi = Med
2

+ Med
2×BTi

11: end if
12: Execute the cloudlet Ci

13: Set BTi -= TQi

14: if BTi < TQi then
15: Continue the execution of the cloudlet Ci and/or move

the cloudlet Ci to the FQ
16: else
17: Move the cloudlet Ci to the end of RQ
18: end if
19: end for
20: if new cloudlet(s) is/are arrived then
21: Add the cloudlet(s) to the end of RQ
22: end if
23: end while

continues its execution (Line 14 and Line 15). Once the ith

cloudlet completes its execution, it is moved to the FQ (Line
15). Otherwise, the ith cloudlet is moved to the end of RQ
(Line 16 to Line 18). On the other hand, if the new cloudlet(s)
is/are arrived, then the cloudlet(s) is/are added to the RQ (Line
20 to Line 22). The above process is iterated until the RQ is
empty (Line 1 to Line 23). Note that SRRA-Med is similar to
SRRA-Min except the line 10.

5. PERFORMANCE METRICS, SIMULATION ENVIRONMENT
AND RESULTS

This section describes the performance metrics, simulation
environment and results.

5.1 Performance Metrics

We consider two performance metrics, namely TET and
throughput, for measuring the performance of the proposed
and existing algorithms. TET is the total time required for
a batch of cloudlets to run until completion. It also includes
the time taken for context switching between two cloudlets.
Note that the context switch time (CST) is the time required to

TABLE II
DATACENTER CHARACTERISTICS

Parameter Value
OS Linux
Virtual Machine Monitor (VMM) Xen
Architecture x86
Host 1

move a cloudlet from primary memory to secondary memory
and load another cloudlet from secondary memory to primary
memory. However, it is calculated as the ratio of the cloudlet
size and the corresponding VM’s bandwidth in the simulation
results. For instance, let us assume that the cloudlet size is 300
bytes (i.e., 2400 bits) and the VM bandwidth is 50000 Mbps.
Therefore, the CST is calculated as 2400

50000 = 0.048 seconds
and is fixed for all the cloudlets. Net execution time (NET) is
the total time taken for all the cloudlets to finish execution,
assuming the overhead of context switching to be negligible
(i.e., zero). Therefore, TET is mathematically expressed as
follows.

TET = NET + 0.048× |CS| (8)

where |CS| is the total number of context switches carried out
during the execution of a batch of cloudlets.
Throughput is the number of cloudlets completed in a fixed
time interval (say, δ). It is mathematically expressed as fol-
lows.

Throughput =
n

δ
(9)

where n is the number of cloudlets completed within the time
interval of δ.

5.2 Simulation Environment

The two variants of the proposed algorithm, SRRA-Min and
SRRA-Med, and the existing algorithm, DRRHA, were tested
using CloudSim Plus [9], a Java 17-based cloudlet simulation
framework. Note that CloudSim Plus can be described as an
extended version of CloudSim 3. The simulation environment
was set up in a new program in which the modified CloudSim
Plus library was imported as an external Java archive file. The
datacenter, host, virtual machines and cloudlet with specific
characteristics were configured in the simulation environment,
as detailed in Table II to Table V, respectively. These configu-
rations were kept constant for all the algorithms. The proposed
and existing algorithms were implemented by modifying and
overwriting the CloudletScheduler parent class and creating
three new classes.
The BT of cloudlets was determined through random sam-
pling from a normal distribution, with parameters such as
µ, σ, and skewness. We varied the number of cloudlets and
skewness, one at a time, while keeping all other parameters
of the cloudlets constant, such as input size, output size,
CPU requirements and others. It ensured that our simulations
were independent of these parameters’ influence and simplified
the calculations of performance metrics. For instance, we

776



TABLE III
HOST CHARACTERISTICS

Parameter Value
Size 1000000 MB
Processing Power 100 MIPS
Bandwidth 100000 Mbps
Processing Elements (PEs) 2
RAM 4096 MB

TABLE IV
VM CHARACTERISTICS

Parameter Value
Image Size 10000 MB
Processing Power 100 MIPS
Bandwidth 50000 Mbps
PEs 2
RAM 1024 MB

increased the batch size of cloudlets from 50 to 180 while
maintaining a constant skewness of -15 during the simulation
of SRRA-Min. On the other hand, we varied the skewness
from -20 to -40 while keeping the batch size of cloudlets
constant at 200. In both cases and their variations, we recorded
the TET, NET and throughput. On the contrary, we increased
the batch size of cloudlets from 50 to 200 while maintaining
a constant skewness of -15 during the simulation of SRRA-
Med. On the other hand, we varied the skewness from -20
to -40 while keeping the batch size of cloudlets constant at
150. Like SRRA-Min, in both cases and their variations, we
recorded the TET, NET and throughput.

5.3 Simulation Results

We considered three cases in the simulation results: (1) SRRA-
Min versus DRRHA, (2) SRRA-Med versus DRRHA and
(3) SRRA-Min versus SRRA-Med versus DRRHA. In each
case, we showed the comparison results in terms of TET
and throughput. SRRA-Min and SRRA-Med improved TET
while maintaining similar or improved throughput for all the
negatively skewed BTs of cloudlets in the RQ. By defining TQ
based on skewness, we effectively captured the effectiveness
of the DRRHA algorithm that prioritizes the mean, while
enhancing TQ for negatively skewed batches by employing
a different TQ calculation. This enhancement is primarily
evident in the significant reduction in the total number of
context switches. Subsequently, it was substantial enough to
affect the TET. It’s important to highlight that this performance
improvement was achieved without any additional loss in
throughput.

5.3.1 SRRA-Min versus DRRHA

We considered two scenarios: constant skewness with varying
cloudlets and constant cloudlets with varying skewness. In
scenario 1, the comparison results of SRRA-Min and DRRHA
are shown in terms of TET in Table VI and throughput in

TABLE V
CLOUDLET CHARACTERISTICS

Parameter Value
File Size 300 bytes
Output Size 300 bytes
Required PEs 1
PE Utilization 100%
Bandwidth Utilization 100%
RAM Utilization 50%

TABLE VI
SRRA-MIN VERSUS DRRHA IN TERMS OF TET WITH VARYING

CLOUDLETS AND SKEWNESS = -15

NET (in Seconds) CST (in Seconds) TET (in Seconds)
Number of
Cloudlets SRRA-Min DRRHA SRRA-Min DRRHA SRRA-Min DRRHA

050 0478.00 0528.31 012.67 032.88 0490.67 0561.18
100 0947.57 0952.19 072.00 095.04 1019.57 1047.23
150 1361.41 1374.04 113.90 108.57 1475.31 1482.62
180 1734.38 1725.52 055.39 113.28 1789.77 1838.80

Table VII. Note that bold indicates the best-performing value
in both tables. In Table VI, we increased the cloudlets from
50 to 180 by keeping -15 as the constant skewness. In Table
VII, we observed the throughput in 100 seconds by increasing
the cloudlets from 50 to 180 and keeping -15 as the constant
skewness. As seen from Table VI, SRRA-Min performs better
in reducing TET (in seconds) than the DRRHA, irrespective
of the number of cloudlets in a single batch. It is also shown
in Figure 1 for easy comparison. It can be observed that in
most cases, SRRA-Min performs better in reducing NET (in
seconds) and CST (in seconds) than the DRRHA. On the other
hand, in throughput, SRRA-Min outperforms DRRHA for
smaller batches (i.e., 50 and 100 cloudlets) and gives similar
performance for larger batches (i.e., 150 and 180 cloudlets).

In scenario 2, the comparison results of SRRA-Min and DR-
RHA are shown in terms of TET in Table VIII and throughput

TABLE VII
SRRA-MIN VERSUS DRRHA IN TERMS OF THROUGHPUT WITH VARYING

CLOUDLETS AND SKEWNESS = -15

Number of Cloudlets SRRA-Min DRRHA
050 0.20 0.19
100 0.20 0.18
150 0.20 0.20
180 0.20 0.20

TABLE VIII
SRRA-MIN VERSUS DRRHA IN TERMS OF TET WITH VARYING

SKEWNESS AND CLOUDLETS = 200

NET (in Seconds) CST (in Seconds) TET (in Seconds)
Skewness SRRA-Min DRRHA SRRA-Min DRRHA SRRA-Min DRRHA

-20 1836.29 1883.08 122.49 115.72 1958.79 1998.81
-25 1846.19 1862.94 118.22 115.92 1964.42 1978.86
-30 1944.98 1891.14 037.87 116.40 1982.85 2007.54
-40 1890.41 1865.67 075.45 120.09 1965.86 1985.76

777



50 100 150 180
400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

49
0
.6
7

1
,0
19

.5
7

1
,4
75

.3
1

1
,7
89

.7
7

56
1
.1
8

1,
04

7
.2
3

1,
48

2
.6
2

1,
83

8
.8

Number of Cloudlets −→

T
E

T
(i

n
Se

co
nd

s)
−→

SRRA-Min DRRHA

Figure 1. Graphical comparison of SRRA-Min versus DR-
RHA in terms of TET with varying cloudlets and skewness =
-15

TABLE IX
SRRA-MIN VERSUS DRRHA IN TERMS OF THROUGHPUT WITH VARYING

SKEWNESS AND CLOUDLETS = 200

Skewness SRRA-Min DRRHA
-20 0.19 0.19
-25 0.19 0.19
-30 0.19 0.19
-40 0.19 0.19

in Table IX. In Table VIII, we increased the skewness from -20
to -40 by keeping 200 as the constant cloudlets. In Table IX,
we observed the throughput in 800 seconds by increasing the
skewness from -20 to -40 and keeping 200 as the constant
skewness. As seen from Table VIII, SRRA-Min performs
better in reducing TET than the DRRHA, irrespective of the
skewness in a single batch. It is also shown in Figure 2 for
easy comparison. It can be observed that in two out of four
cases, SRRA-Min performs better in reducing NET and CST
than the DRRHA. On the other hand, in throughput, SRRA-
Min gives a similar performance to DRRHA.
The rationality behind the better performance of SRRA-Min
is that the TQ of SRRA-Min is larger compared to the TQ of
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Figure 2. Graphical comparison of SRRA-Min versus DR-
RHA in terms of TET with varying skewness and cloudlets =
200

TABLE X
SRRA-MED VERSUS DRRHA IN TERMS OF TET WITH VARYING

CLOUDLETS AND SKEWNESS = -15

NET (in Seconds) CST (in Seconds) TET (in Seconds)
Number of
Cloudlets SRRA-Min DRRHA SRRA-Min DRRHA SRRA-Min DRRHA

050 0488.97 0486.42 02.30 34.65 0491.27 0521.08
100 0989.73 1001.68 13.96 95.95 1003.70 1097.64
150 1552.84 1580.88 07.58 91.96 1560.42 1672.85
200 2094.94 2024.59 09.74 93.84 2104.68 2118.43

DRRHA for negatively skewed BTs of cloudlets in the RQ.
Hence, each cloudlet executes for extended periods, leading
to improved TET, NET and throughput. Nevertheless, as the
number of cloudlets increases, NET performance worsens, but
CST decreases, ultimately leading to an improvement in TET.

5.3.2 SRRA-Med versus DRRHA

Like SRRA-Min versus DRRHA, we considered two scenar-
ios: constant skewness with varying cloudlets and constant
cloudlets with varying skewness. In scenario 1, the comparison
results of SRRA-Med and DRRHA are shown in terms of
TET in Table X and throughput in Table XI. Note that bold
indicates the best-performing value in both tables. In Table
X, we increased the cloudlets from 50 to 200 by keeping -
15 as the constant skewness. In Table XI, we observed the
throughput in 100 seconds by increasing the cloudlets from
50 to 200 and keeping -15 as the constant skewness. As seen
from Table X, SRRA-Med performs better in reducing TET
(in seconds) than the DRRHA, irrespective of the number of
cloudlets in a single batch. It is also shown in Figure 2 for
easy comparison. It can be observed that SRRA-Med performs
better in reducing NET (in seconds) in two out of four cases
and CST (in seconds) in all the cases than the DRRHA. On
the other hand, in throughput, SRRA-Med outperforms or
performs similarly to DRRHA.
In scenario 2, the comparison results of SRRA-Med and DR-
RHA are shown in terms of TET in Table XII and throughput
in Table XIII. In Table XII, we increased the skewness from
-20 to -40 by keeping 150 as the constant cloudlets. In Table
XIII, we observed the throughput in 800 seconds by increasing
the skewness from -20 to -40 and keeping 150 as the constant
skewness. As seen from Table XII, SRRA-Med performs better
in reducing TET (in seconds) than the DRRHA, irrespective of
the skewness in a single batch. It is also shown in Figure 4 for
easy comparison. It can be observed that SRRA-Med performs
better in reducing NET (in seconds) in two out of four cases
and CST (in seconds) in all the cases than the DRRHA.
On the other hand, in throughput, SRRA-Med outperforms
DRRHA. Note that greater skewness resulted in an increase
in throughput.
A larger disparity between the mean and median contributes to
enhanced performance for SRRA-Med. This can be attributed
to the higher associated TQ for each cloudlet. As a result,
TET, NET and throughput were improved. However, in cer-
tain cases, the performance of NET may degrade, but CST
decreases, resulting in an overall improvement in TET.
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TABLE XI
SRRA-MED VERSUS DRRHA IN TERMS OF THROUGHPUT WITH VARYING

CLOUDLETS AND SKEWNESS = -15

Number of Cloudlets SRRA-Min DRRHA
050 0.060 0.060
100 0.123 0.123
150 0.186 0.182
200 0.192 0.192
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Figure 3. Graphical comparison of SRRA-Med versus DR-
RHA in terms of TET with varying cloudlets and skewness =
-15

5.3.3 SRRA-Min versus SRRA-Med versus DRRHA

Like previous cases, we considered two scenarios: constant
skewness with varying cloudlets and constant cloudlets with
varying skewness. In scenario 1, the comparison results of
SRRA-Min, SRRA-Med and DRRHA are shown in terms of
TET in Table XIV and throughput in Table XV. Note that bold
indicates the best-performing value in both tables. In Table
XIV, we increased the cloudlets from 50 to 200 by keeping
-15 as the constant skewness. In Table XV, we observed the
throughput in 100 seconds by increasing the cloudlets from
50 to 200 and keeping -15 as the constant skewness. As seen

TABLE XII
SRRA-MED VERSUS DRRHA IN TERMS OF TET WITH VARYING

SKEWNESS AND CLOUDLETS = 150

NET (in Seconds) CST (in Seconds) TET (in Seconds)
Skewness SRRA-Med DRRHA SRRA-Med DRRHA SRRA-Med DRRHA

-20 1486.82 1505.55 012.86 090.52 1499.68 1596.08
-25 1504.72 1416.63 007.20 114.09 1511.92 1530.73
-30 1482.79 1499.31 009.55 088.94 1492.34 1588.26
-40 1518.72 1443.30 007.20 111.79 1525.92 1555.09

TABLE XIII
SRRA-MED VERSUS DRRHA IN TERMS OF THROUGHPUT WITH VARYING

SKEWNESS AND CLOUDLETS = 150

Skewness SRRA-Med DRRHA
-20 0.183 0.180
-25 0.186 0.176
-30 0.185 0.180
-40 0.187 0.180
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Figure 4. Graphical comparison of SRRA-Med versus DR-
RHA in terms of TET with varying skewness and cloudlets =
150

TABLE XIV
SRRA-MIN VERSUS SRRA-MED VERSUS DRRHA IN TERMS OF TET

WITH VARYING CLOUDLETS AND SKEWNESS = -15

NET (in Seconds) CST (in Seconds) TET (in Seconds)
Number of
Cloudlets SRRA-Min SRRA-Med DRRHA SRRA-Min SRRA-Med DRRHA SRRA-Min SRRA-Med DRRHA

050 0518.49 0505.97 0511.68 11.42 02.30 035.80 0529.91 0508.27 0547.48
100 1034.03 1021.45 1005.40 48.48 10.89 095.37 1082.51 1032.35 1100.78
150 1517.98 1558.87 1504.25 77.18 07.29 109.20 1595.16 1566.16 1613.45
200 2030.65 2035.61 2053.17 54.00 53.52 107.23 2084.65 2089.13 2160.40

from Table XIV, SRRA-Med performs better in reducing TET
in three out of four cases than the SRRA-Min and DRRHA,
irrespective of the number of cloudlets in a single batch. It is
also shown in Figure 5 for easy comparison. In throughput,
SRRA-Min outperforms SRRA-Med and DRRHA in three out
of four cases.
In scenario 2, the comparison results of SRRA-Min, SRRA-
Med and DRRHA are shown in terms of TET in Table XVI
and throughput in Table XVII. In Table XVI, we increased
the skewness from -20 to -40 by keeping 150 as the constant
cloudlets. In Table XVII, we observed the throughput in 800
seconds by increasing the skewness from -20 to -40 and keep-
ing 150 as the constant skewness. As seen from Table XVII,
SRRA-Med performs better in reducing TET in three out of
four cases than the SRRA-Min and DRRHA, irrespective of

TABLE XV
SRRA-MIN VERSUS SRRA-MED VERSUS DRRHA IN TERMS OF
THROUGHPUT WITH VARYING CLOUDLETS AND SKEWNESS = -15

Number of Cloudlets SRRA-Min SRRA-Med DRRHA
050 0.061 0.060 0.060
100 0.125 0.121 0.110
150 0.176 0.181 0.171
200 0.196 0.192 0.188

TABLE XVI
SRRA-MIN VERSUS SRRA-MED VERSUS DRRHA IN TERMS OF TET

WITH VARYING SKEWNESS AND CLOUDLETS = 150

NET (in Seconds) CST (in Seconds) TET (in Seconds)
Skewness SRRA-Min SRRA-Med DRRHA SRRA-Min SRRA-Med DRRHA SRRA-Min SRRA-Med DRRHA

-20 1521.70 1541.26 1501.80 83.71 17.61 112.32 1605.41 1558.87 1614.12
-25 1520.99 1503.06 1506.30 71.76 07.24 104.78 1592.75 1510.31 1611.08
-30 1515.10 1554.11 1505.84 55.15 17.90 110.35 1570.25 1572.01 1616.19
-40 1536.30 1508.91 1506.44 56.16 07.10 109.39 1592.46 1516.02 1615.83
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Figure 5. Graphical comparison of SRRA-Min versus SRRA-
Med versus DRRHA in terms of TET with varying cloudlets
and skewness = -15

TABLE XVII
SRRA-MIN VERSUS SRRA-MED VERSUS DRRHA IN TERMS OF
THROUGHPUT WITH VARYING SKEWNESS AND CLOUDLETS = 150

Skewness SRRA-Min SRRA-Med DRRHA
-20 0.180 0.185 0.178
-25 0.182 0.183 0.175
-30 0.185 0.186 0.185
-40 0.187 0.185 0.180

the skewness in a single batch. It is also shown in Figure 6
for easy comparison. On the other hand, in throughput, SRRA-
Med outperforms SRRA-Min and DRRHA.
The reason behind the better performance of SRRA-Med is
stated as follows. The DRRHA algorithm only utilizes the
mean in its calculation of TQ, implying that TQ for a left-
skewed RQ would be smaller. However, we specify different
formulations of TQ for left and right-skewed distributions,
which results in more significance for running cloudlets.

6. CONCLUSION AND FUTURE WORK

We have presented a novel skewness-based algorithm for
cloudlet scheduling. The algorithm is based on the batch
characteristics of the cloudlets in the RQ. The algorithm
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Figure 6. Graphical comparison of SRRA-Min versus SRRA-
Med versus DRRHA in terms of TET with varying skewness
and cloudlets = 150

has been shown in two distinct variations: SRRA-Min and
SRRA-Med. We have demonstrated the proposed algorithm’s
efficacy by comparing its performance in terms of TET and
throughput with the DRRHA algorithm that uses the mean of
the RQ to calculate TQ. Moreover, the proposed and existing
algorithms have been compared by taking constant skewness
with varying cloudlets and constant cloudlets with varying
skewness. We found that both the variants of the proposed
algorithm show improved TET and throughput compared to
the DRRHA for negatively skewed BTs of cloudlets in the RQ.
Moreover, the proposed variants reduce the context switches
due to the dynamic TQ, improving the TET. This work can
be extended by performing an in-depth analysis of complex
cloudlet batches. Further, we plan to shift the sampling of
cloudlets from an unimodal distribution to a multi-modal
distribution by emphasizing statistical properties like modality.
On the other hand, we intend to broaden the scope of TQ by
incorporating other statistical measures like kurtosis.
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